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CHAPTER 5 

IMPLEMENTATION AND RESULTS 

5.1. Overview 

In the previous chapter, we discussed the analysis and design used in this research.  Now, 

the research breaks into two parts of this chapter.  The first part is implementation, how the code 

in this algorithm from dataset preprocessing until the model or algorithm code.  In the next part is 

the result from the Adaboost ( Adaptive Boosting ) algorithm, the score and performance we get 

with the semi-supervised learning.  It is compared with the Adaboost ( Adaptive Boosting ) 

algorithm in supervised learning.  For the addition, we used comparison between the learning with 

SVD (Singular Value Decomposition) and without SVD ( Singular Value Decomposition). 

5.2. Implementation 

In this implementation explained about how the code in this algorithm from the dataset and 

the model or algorithm code.  The first is about dataset, dataset will split into preprocessing data 

and data processing.  The second is about algorithm code, how Adaboost ( Adaptive Boosting ) 

algorithm scratches from feature extraction. 

Now, the research talks about dataset preprocessing data.  In this preprocessing data, we 

start from checking the dataset especially in the “Content” column and “Annotation” column.  It 

needs to be checked to match or not for each other. 

1. data.info() 

From the line 1, give how many row which used in the dataset.  It is same or not, if not we 

need to checked again.  And the output shows as below. 

 

Figure 5.1 Dataset Info 
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Figure 5.2.1 shows how many rows in each column are non-null.  Non-null in this case is 

not empty and not NaN.  The data shows that there are the same number of each column which is 

364 rows not null.  The type of each column is an object.  The object is a form of a collection of 

data.  It has alternatives code for the specific column shown in the code below 

1. data['Annotation'].count() 

The code above shows how many rows are in the “Annotation” column.  It can be replaced 

with other columns like “Content” or “Url”.  If there are many rows which are null means that 

NaN or maybe empty it can be dropped or filled with the majority class. 

In the “Content” column,  it’s very dirty because of the stopwords, news headlines like 

“Jakarta – Sindonews” that affected the data training.  So, in this process it cleaned by this code 

below 

1. def clean_text(news): 
2.     news = re.sub(r'^\w+[^-]*[ -] ?\\?',' ',news) 
3.     news= re.sub(r'https?://\S+|www\.\S+','',news) 
4.     news = re.sub(r'<.*?>','',news) 
5.     news = re.sub(r'\d+','',news) 
6.     news = re.sub(r'@\w+','',news) 
7.     news = re.sub(r'[^\w\s\d]','',news) 
8.     news = re.sub(r'\s+',' ',news).strip() 
9.     news = " ".join([word for word in str(news).split() if word not 

in stops])   

10.     return news.lower() 

In the code above, it is the core of the preprocessing data because it can very affect the 

prediction.  Line 1 means we defined a function named clean_text with parameters news.  In line 

2, we used a library called Regex (Regular Expression) to remove sources of the news like “Jakarta 

–“.  Re.sub means to replace a substring with another substring.  Regex will filter that beginning 

with a word that shows in the symbol ^w and + means which token is matched at least once and 

more.  And then [^-] means that match in any character that is not in the set. * means that matches 

0 or more tokens with that pattern.  [ -] means that it matches any character on the set.  In this case, 

space and character “-“. The next symbol  ?\\? means that after this pattern is optional for spaces 

and escaped characters after that character.  The goal of Line 3 is to remove links in news 

content.  Line 4 is to remove html sentences.  Line 5 to remove any number in the news content. 

Line 6 to remove any sentences that begin with the symbol “@”.  Line 7 is to remove punctuation 

like “!”, “., “?”, “!”.  Line 8 to remove whitespace.  Line 9 to filter stopwords if there are no 
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stopwords the words will skip and rearrange in a sentence.  Line 10 is to return sentences into 

lowercase.  Now, we will discuss stemming. The code for stemming is shown below 

 

1. factory = StemmerFactory() 
2. stemmer = factory.create_stemmer() 
3. data['stemText'] = data['CleanText'].apply(lambda x: 

stemmer.stem(x)) 

In the code above, it is the stemming process.  In this process, we used the stemmer library 

from Sastrawi library.  It is very good for the stemming process.  Line 1 is used to define a factory 

for stemmers.  Line 2 is used to create stemmers.  Line 3 converts each row into stem sentences 

form and input into a dataframe column named “stemText”.  It takes at least 20 minutes for 365 

data.  After preprocessing, we can analyze data by using word count in each class and detect 

outliers using boxplot. 

1. def word_freq(clean_text_list, top_n): 
2.     flat = [item for sublist in clean_text_list for item in 

sublist] 

3.     with_counts = Counter(flat) 
4.     top = with_counts.most_common(top_n) 
5.     word = [each[0] for each in top] 
6.     num = [each[1] for each in top] 

In the code above, it is explained one by one.  The goal of that code is to rank the dominant 

word in the dataset. 

1. cl_text_list = data['CleanSplitText'].tolist() 
2. wf = word_freq(cl_text_list, 20) 
3. wf.head(20) 

For line 1 is to make a dataset in column “CleanSplitText” to list.  It was done for the 

word_freq function.  In line 2, it called a function named word_freq and sent a parameter list, and 

the number of top words.  In line 3, it shows the top 20 of the word.  The output of this code above 

is the picture below.  
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Figure 5.2 The Top 20 Word Count of Whole Data 

 

Figure 5.2 we can know the top 20 words.  We can also make a word count from each 

class.  It is not too much change from a whole document.  Besides a word count, it used boxplot 

to detect outliers.  Outliers are detected by boxplot for the code shown below. 

1. dfconcat = pd.concat([dfconcat], axis=0, ignore_index=True) 
2. dfconcat.boxplot(by ='Category', column =['count'], grid = False) 

The first line means we concat data on each class in one other dataframe.  In Line 2, we 

used a boxplot with a group by “Category” column to get from “Count” column, grid = False 

means show boxplot with grid background or not.  It shows boxplot with the picture below 

 

Figure 5.3 Boxplot to Detect Outliers 

Figure 5.2.3, the data have an outlier.  It shows a circle that is far away from the Quartile 

1 and far away from the max value on each class.  It is not a big problem because in the learning 
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algorithm we used ensemble learning in boosting approach.  It can solve these outliers, especially 

small outliers. 

For the data processing, we used a library for feature extraction. In this feature extraction, 

we used TF-IDF(Term of Frequency Inverse Document Frequency) and SVD (Single Value 

Decomposition) to reduce dimension in the matrix.  The code below shows how to get the TF-IDF. 

1. texts = df['CleanSplitText'].astype('str') 
2. tfidf_vectorizer = TfidfVectorizer(ngram_range=(1, 2),  
3.                                    min_df = 2,  
4.                                    max_df = .95) 

For line 1 is to change the data type from series to string.  Line 2 defines TF-IDF from 

tensorflow with the parameter.  The parameter used n-gram, min_df, and max_df.  N-gram means 

how many words will be used in the research.  Min_df means a minimum document frequency 

will be used for the processing data. Max_df means a maximum document frequency will be used 

for the processing data.  The SVD ( Singular Decomposition Value ) is shown by the code below. 

1. lsa = TruncatedSVD(n_components=100,  
2.                    n_iter=10) 

For line 1 we defined the SVD ( Singular Decomposition Value ) algorithm to reduce 

dimensionality in a sparse matrix.  N_components is Desired dimensionality of output data.  It is 

less than the number of features.  N_iter is the number of iterations for a randomized SVD solver.   

After preprocessing and processing data, now we hold on modelling.  In modelling we used 

the Adaboost (Adaptive Boosting) algorithm.  In this algorithm, we split into two learning.  The 

first is supervised learning and the second is semi-supervised learning.  Supervised learning starts 

with splitting the data into train and test data.  The splitting process is shown by the code below 

1. X_train, X_test, y_train, y_test = train_test_split(xdata, ydata, 
test_size=0.1) 

For line 1 means divide the data into two parts: train and test in each divide into X and 

Y.  X split into X_train and x_test. Y split into y_train and y_test.  Train_test_split is a function 

from ScikitLearn that can split into data train and data test.  It works with parameter data x and y, 

and the test_size is how many percent is split between train and test.  Now, let us see how 

supervised learning is with Adaboost ( Adaptive Boosting ) code below.     

1. clf = AdaBoostClassifier(n_estimators=5) 
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For line 1 it is called an Adaboost class with n_estimator 5.  N_estimators means how 

maximum stumps will be created in that model.  Stumps is a tree with only one branch.  The 

function is explained in the code below. 

1. class AdaBoostClassifier: 
2.      
3.     def __init__(self,base_estimator=None,n_estimators=50): 
4.         self.n_estimators = n_estimators 
5.         self.models = [None]*n_estimators 
6.         if base_estimator == None: 
7.             base_estimator = DecisionTreeClassifier(max_depth=1) 
8.         self.base_estimator = base_estimator 
9.         self.estimator_errors_ = [] 

For line 1 means define a class named AdaBoostClassifier.  Line 3 defines a 

constructor.  So, if the object is formed, the default constructor will be applied.  Line 4 defines 

n_estimators.  Line 5 defines a model that has N times n_estimators.  Line 6 detects whether there 

is a base estimator or not.  Base estimator is where the boosted ensemble is built.  Line 7 shows 

the default used decision tree classifiers but the maximum depth of tree is only 1.  Line 8 defines 

base_estimator for the object.  Line 9 defines an empty array to collect classification error for each 

estimator in the boosted ensemble. 

1. def fit(self,X,y): 
2.         X = np.float64(X) 
3.         N = len(y) 
4.         w = np.array([1/N for i in range(N)]) 
5.         self.createLabelDict(np.unique(y)) 
6.         k = len(self.classes) 

For line 1 means define a class named fit.  The goal of this function is to train data and start 

boosting methods.  Line 2 is collected from X train to variable X.  line 3 is to count the number of 

rows which will train.  Line 4 is calculated weight for each data.  Line 5 is to create a unique 

dictionary that converts from label to number.  Line 6 counts how many classes in the dataset.  The 

code below is to iterate and make the stumps. 

1. for m in range(self.n_estimators): 
2.             Gm = base.clone(self.base_estimator).\ 
3.                             fit(X,y,sample_weight=w).predict 
4.             incorrect = Gm(X) != y 
5.             errM = np.average(incorrect,weights=w,axis=0) 
6.             self.estimator_errors_.append(errM) 
7.             BetaM = (np.log((1-errM)/errM)+np.log(k-1)) 
8.             w *= np.exp(BetaM*incorrect*(w > 0)) 

For line 1 means define how many iterations will be created.  Line 2 is to construct a new 

unfitted estimator with the same parameters and fit with the function fit and make predictions that 
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are all collected in the Gm variable.  Line 4 is collected from Gm where it is incorrectly 

predicted.  Line 5 is the calculated error rate.  Line 6 is appended to estimator_errors from error 

rate.  Line 7 is calculated betta value or in the theory called alpha value with that formula.  Line 8 

is calculated as a new weight.  The other code of this implementation will be show as below 

1. def createLabelDict(self,classes): 
2.         self.labelDict = {} 
3.         self.classes = classes 
4.         for i,cl in enumerate(classes): 
5.             self.labelDict[cl] = i 

For line 1 means define a function to create a label dictionary with parameter classes.  Line 

2 is a defined set for label dict.  Line 3 is to get classes from numpy unique from data y.  line 4 is 

to iterate the index and name of classes.  Line 5 is define Label dictionary as get index insert into 

labelDict. 

1. def predict(self,X): 
2.         k = len(self.classes) 
3.         y_pred = sum(Bm*indexToVector(Gm(X),k,self.labelDict) \ 
4.              for Bm,Gm in self.models) 

5.         iTL = np.vectorize(indexToLabel) 
6.         return iTL(np.argmax(y_pred,axis=1),self) 

For line 1 means define a function named predict.  Line 2 is the number of classes.  Line 3 

is get y_pred from the result of sum from Bm times to index to vector from X.  Bm gets from 

iteration in the model per iteration in the fit function.  Line 5 is a converter from list to vector from 

the result of the function indexToLabel.  Line 6 is the return function into the specific class.   

 

Figure 5.4 Dataset for Real scenario 

The figure 5.4 shows dataset will be used for real scenario and the output will be in the 

figure 5.5 below. 

   

Figure 5.5 The output from prediction 

5.3. Results 

The result of this evaluation method is divided into four variations.  The first is an 

imbalanced class with supervised learning.  The second is an imbalanced class with semi-
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supervised learning.  It does after supervised learning.  The third is a balanced class with 

supervised learning.  The fourth is a balanced class with supervised learning.  They are using 

dataset proportions 90:10, 90% for training set and validation set in supervised learning and 10% 

for making predictions in semi-supervised learning.  So, the total data that is used for this model 

is 328 rows.  It split into 25:75, 50:50, and 75:25.  It can be shown in the table below. 
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Table 5.1 Imbalanced Class Supervised Learning Table 

 Train : Test 

Parameter 25:75 50:50 75:25 

 Accuracy 82.02 92.22 92.72 

Macro Precision 84.87 91.57 93.06 

 Recall 81.83 90.93 91.15 

 F1-Score 79.88 90.13 91.19 

Micro Precision 84.52 92.22 92.73 

 Recall 82.08 92.22 92.73 

 F1-Score 83.00 92.22 92.73 

  From the Table 5.1, we know that the method of that learning is supervised learning.  The 

performance is shown by parameters from this method with datasets from different ratios.  The 

parameters also divide into macro and micro averaged.  The first is 25:75, the second is 50:50, and 

75:25.  With these ratios 25:75, the model gets 82.02 % accuracy.  For the macro-averaged, 

precision gets 84.87%, recall gets 81.83%, and F1-Score gets 79.88%.  For the micro-averaged, 

precision gets 84.52%, recall gets 82.08%, and F1-Score gets 83%.  In macro-averaged precision 

gets 84.87% higher than micro-averaged precision which has only 84.52%.  In micro averaged, 

precision of each class calculated and added, then divided by the number of classes.  Precision 

intuitively the performance only predicts the data really positively.  From the formula it is inversely 

proportional with the false negative that the actual data is right and the prediction is wrong.  It can 

be said that less false positives give higher precision. So, in this case that is not too many false 

negatives.    

If we can see, in micro-averaged there are many with the same value especially precision, 

recall, and F1-Score.  It happens because precision and recall are the same and F1-Score gets the 

mean between them.  For example, it is explained in the table below. 
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Table 5.2 Micro-averaged with Same Value 

Label 0 2 1 1 2 0 1 0 1 1 

Prediction 1 2 1 0 0 1 1 0 2 2 

From the Table 5.2, we can see that there are 2 columns labeled and predicted.  Label 

represents the class or categorize for the news and prediction represents the model that predicts the 

data.  From this table, we can also calculate the result from this formula below. 

 

Figure 5.5 Precision Formula 

 

Figure 5.6 Recall Formula 

In the Figure 5.5 is the precision formula.  In the Figure 5.6 is the recall formula.  TP is 

the amount of samples that were predicted with the correct label.  In this case, the number of TP 

is 4.  It is shown by all the green cells.  While FP is the number of actual is false and predicted is 

true.  In this case, the number of FP is 6.  It is shown with the red cells.  For the first red cells the 

0 should predict 0,but 1 was predicted.  It can be said that is false positive for 1 class.  Otherwise, 

if the second column is 2 and the predicted is 2.  It is true positive and there is no FP count.  FN is 

the number of while actual is true and the predicted is false.   In this case, the number of FN is 6.  

It is shown with the red cells.  For the first red cells the 0 should predict 0,but 1 was predicted.  It 

can be said that there are false negatives for class 0.  Otherwise, if the second column is 2 and the 

predicted is 2.  It is true negatives and there is no FN count.  From the example above, there are 

many possibilities with the same value, especially precision, recall, and F1-Score in micro-

averaged because of that. 
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With this ratio of 50:50, the model gets 92.22 % accuracy.  For the macro-averaged, 

precision gets 91.57%, recall gets 90.93%, and F1-Score gets 90.13 %.  For the micro-averaged, 

precision, recall, and F1-Score get 92.22%.   

With this ratio of 75:25, the model gets 92.72 % accuracy.  For the macro-averaged, 

precision gets 93.06%, recall gets 91.15%, and F1-Score gets 91.19 %.  For the micro-averaged, 

precision, recall, and F1-Score get 92.73%.   

It can be seen that if the training set is added, the performance of each parameter will 

increase too.  It also concluded that the model gets a lot of training data.  The learning performance 

will be increased as add training data in the model. 

Table 5.3 Imbalanced Class Semi-Supervised Learning Table 

 Train : Test 

Parameter 25:75 50:50 75:25 

 Accuracy 94.56 94.89 92.33 

Macro Precision 94.78 95.67 92.80 

 Recall 93.23 94.1 91.82 

 F1-Score 93.18 94.43 91.77 

Micro Precision 94.56 94.89 92.33 

 Recall 94.56 94.89 92.33 

 F1-Score 94.56 94.89 92.33 

 From the Table 5.3, we know that the method of that learning is semi-supervised learning.  

The performance is shown by parameters from this method with datasets from different ratios.  

The parameters also divide into macro and micro averaged.  The first is 25:75, the second is 50:50, 

and 75:25.   

With these ratios 25:75, the model gets 94.56 % accuracy.  For the macro-averaged, 

precision gets 94.78%, recall gets 93.23%, and F1-Score gets 93.18%.  For the micro-averaged, 

precision gets 94.56%, recall gets 94.56%, and F1-Score gets 94.56%.  In macro-averaged 

precision it is 94.78% smaller than micro-averaged precision which has only 94.56%.   

With this ratio of 50:50, the model gets 94.89 % accuracy.  For the macro-averaged, 

precision gets 95.67%, recall gets 94.10%, and F1-Score gets 94.43 %.  For the micro-averaged, 

precision, recall, and F1-Score get 94.89%.   
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With this ratio of 75:25, the model gets 92.33 % accuracy.  For the macro-averaged, 

precision gets 92.80%, recall gets 91.82%, and F1-Score gets 91.77 %.  For the micro-averaged, 

precision, recall, and F1-Score get 92.33%. 

It can be seen that if the training set is added in supervised learning, the performance of 

each parameter in semi-supervised learning will increase too.   It also concluded that the model 

gets a lot of training data.  The learning performance will be increased as add training data in the 

model.  Adding a semi-supervised learning model with pseudo labelling, it can further improve 

the accuracy and precision recall. 

Table 5.4 Balanced Class Supervised Learning Table 

 Train : Test 

Parameter 25:75 50:50 75:25 

 Accuracy 92.22 88.61 91.11 

Macro Precision 91.57 80.66 82.48 

 Recall 91.80 83.12 84.17 

 F1-Score 90.24 80.72 82.55 

Micro Precision 92.78 88.86 91.99 

 Recall 92.22 88.61 91.11 

 F1-Score 92.47 88.73 91.53 

 From the table 5.3.4 , we know that the method of that learning is supervised learning. 

But, in this case, we used a balanced dataset in each class. The performance is shown by parameters 

from this method with datasets from different ratios.  The parameters also divide into macro and 

micro averaged.  The first is 25:75, the second is 50:50, and 75:25.   

With these ratios 25:75, the model gets 92.22 % accuracy.  For the macro-averaged, 

precision gets 91.57%, recall gets 91.80%, and F1-Score gets 90.24%.  For the micro-averaged, 

precision gets 92.78%, recall gets 92.22%, and F1-Score gets 92.47%.  In macro-averaged 

precision it is 91.57% close to micro-averaged precision which is 92.78%.   

With this ratio of 50:50, the model gets 88.61 % accuracy.  For the macro-averaged, 

precision gets 80.66%, recall gets 83.12%, and F1-Score gets 80.72 %.  For the micro-averaged, 

precision gets 88.86% , recall gets 88.61%, and F1-Score gets 88.73%.   
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With this ratio of 75:25, the model gets 91.11 % accuracy.  For the macro-averaged, 

precision gets 82.48%, recall gets 84.17%, and F1-Score gets 82.55 %.  For the micro-averaged, 

precision gets 91.99%, recall gets 91.11%, and F1-Score gets 91.53%. 

  

 

Figure 5.2.3 Balanced Class with 80 Rows of Each Class 

From the description above, we know that using a balanced dataset, supervised learning 

with Adaboost can get the result closer to each other from macro and micro. We know that they 

have a closer score for each other.  It happens because the data for each class is balanced, which 

amounts to 80 rows.  It can be smaller because the data have manually undersampling that reduces 

the majority of the class adjusted to the minority class.  The picture below shows the balanced 

class with 80 rows of each class. 

Table 5.5 Balanced Class Semi Supervised Learning Table 

 Train : Test 

Parameter 25:75 50:50 75:25 

 Accuracy 95.69 94.58 91.25 

Macro Precision 87.38 83.69 74.84 

 Recall 88.34 85.87 77.58 

 F1-Score 87.55 84.3 75.65 

Micro Precision 95.69 94.58 91.38 

 Recall 95.69 94.58 91.25 

 F1-Score 95.69 94.58 91.32 

 From the Table 5.5, we know that the method of that learning is semi-supervised learning. 

But, in this case, we used a balanced dataset in each class. The performance is shown by parameters 

from this method with datasets from different ratios.  The parameters also divide into macro and 

micro averaged.  The first is 25:75, the second is 50:50, and 75:25.   

With these ratios 25:75, the model gets 95.69 % accuracy.  For the macro-averaged, 

precision gets 87.38 %, recall gets 88.34 %, and F1-Score gets 87.55%.  For the micro-averaged, 

precision, recall, F1-Scores get the equal number 95.69 %.   
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With this ratio of 50:50, the model gets 94.58 % accuracy.  For the macro-averaged, 

precision gets 83.69 %, recall gets 85.87 %, and F1-Score gets 84.3 %.  For the micro-averaged, 

precision, recall, and F1-Score get the equal number 94.58 %.   

With this ratio of 75:25, the model gets 91.25 % accuracy.  For the macro-averaged, 

precision gets 74.84 %, recall gets 77.58 %, and F1-Score gets 75.65 %.  For the micro-averaged, 

precision gets 91.38 %, recall gets 91.25 %, and F1-Score gets 91.32 %. 

As we can also see, the model for each macro-averaged not performed well.  It happens 

because the data is very small.  It is just 80 rows compared with imbalanced data which is bigger 

than a balanced dataset.  It affects the learning data process that is not enough, if it is just only 240 

rows.  So, the learning model is not very good.  Macro-averaged and micro-averaged have quite a 

difference.  It happens because balanced data only use micro-averaged opposition with imbalanced 

data we only focus on macro-averaged.  If we look on micro-averaged, the model is very good 

because it can improve the performance of learning. 

Table 5.6 Imbalanced Class Supervised Learning 780 rows without SVD Algorithm 

  Train : Test 

Parameter 25:75 50:50 75:25 

  Accuracy 80.42 86.22 91.82 

Macro Precision 78.24 88.06 91.41 

  Recall 77.69 85.21 91.75 

  F1-Score 74.40 84.38 90.75 
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Micro Precision 80.77 86.22 91.82 

  Recall 80.42 86.22 91.82 

  F1-Score 80.58 86.22 91.82 

In the Table 5.6 , we see that without the SVD algorithm, the performance of that machine 

learning decreased.  It can be seen from each ratio of the dataset that shown decreased performance 

compared with SVD Algorithm.  It can be explained that SVD algorithms affect the performance 

of machine learning, because the dimension of sparse matrices can be reduced.  If there is no SVD 

algorithm, the dimension matrices can cause bias for the classification.  It happens because SVD 

works with R and S values.  If the R value is lower the SVD can be optimized, but it also depends 

on S value.  If the S value is good enough, and the R value will lower, the data will be noisy.  But, 

if the S value is good enough and the R value is also good enough, the data will be optimized. 

 

Table 5.7 Imbalanced Class with 780 Rows Data Supervised Learning Table with SVD 

Algorithm 

 Train : Test 

Parameter 25:75 50:50 75:25 

 Accuracy 97.33 95.64 96.84 

Macro Precision 96.67 94.55 96.03 

 Recall 96.55 94.79 97.35 
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 F1-Score 95.92 94.35 96.51 

Micro Precision 97.33 95.64 96.84 

 Recall 97.33 95.64 96.84 

 F1-Score 97.33 95.64 96.84 

From the Table 5.7. , we know that the additional data can affect the result.  As shown by 

the table above, with a ratio 25:75, the performance of machine learning improves well compared 

to 365 rows of data.  The precision and recall is just a little difference, so that it can not be said 

that is overfitted or underfit.  The macro averaged and micro averaged also have a little difference. 

The multi classification from this case overall is good, but if the training data increases, it has a 

stagnan result.  From this result, with the same number of data with 365 rows of data it also 

represented the result from the division of the dataset with 780 rows of data. 

Table 5.8 Imbalanced Class with 780 Rows Data Semi-Supervised Learning Table with SVD 

Algorithm 

 Train : Test 

Parameter 25:75 50:50 75:25 

 Accuracy 99.40 97.31 96.88 

Macro Precision 99.31 96.45 96.30 

 Recall 99.25 97.35 97.01 
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 F1-Score 99.26 96.79 96.53 

Micro Precision 99.40 97.31 96.88 

 Recall 99.40 97.31 96.88 

 F1-Score 99.40 97.31 96.88 

Supervised learning affects semi-supervised learning from the number of dataset.  From 

the Table 5.8, the result of semi-supervised learning can increase the performance of supervised 

learning.  Overall, with the same ratio, it can increase the performance. 

Semi-supervised learning also can improve the accuracy. By the data from supervised 

learning, we can see the precision, recall, and F1-Score with the same ratio in semi-supervised 

learning and the performance improved well.  If the data varied with the same learning ( supervised 

or semi-supervised learning ) the performance of learning  also increased.  Although,  there is the 

result that is not increased, but it is just 1-5% only a small difference between them. 

  With the addition of data, it also performs with a little difference in performance of 

measure.  Natural Language Processing (NLP) has many features in each row of the dataset.  So, 

with the additional data, it may add the feature but not all the feature is tested with the test data. In 

this case there is a possibility that all of the features can not be tested in datatest. 

From the Table 5.1 and  Table 5.4 we know that imbalanced dataset with the same  number 

of data has difference  result.    As we know that, ensemble learning can solve  imbalanced dataset.  

From the algorithm we used adaboost algorithm which is one of the ensemble learning method 

(boosting).  We can see that, the result of imbalanced dataset  is  better than balanced dataset.  It 

can be said that adaboost algorithm work well in imbalanced dataset that is boost the machine  

learning performance.


