
CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1. Implementation

For  the  DNN algorithm,  we  utilize  the  sklearn.datasets  library  to  fetch  the  ORL

dataset. Line number 1 is used to import the Olivetti faces from the sklearn.dataset library.

The parameter of return_X_y is set to true, which returns (data, target) instead of a Bunch

object. The following line stores the data fetched to the variables X and y. 

1 from sklearn.datasets import fetch_olivetti_faces
2 X,y = fetch_olivetti_faces(return_X_y=True) 

The next  step  is  to  split  the  dataset  into  training  and test  sets.  Here  we give  the

parameter X and y, which contains the data and target. The test_size is going to be varied. The

first  proportion  is  0.1,  then  0.2,  0.3,  and lastly,  0.4.  Set  the  stratify  and random state  to

improve the precision of the sample and control the shuffling before applying the split.

3 train_X,  test_X,  train_y,  test_y  =  train_test_split(X,  y,
test_size=0.20, stratify=y, random_state=42)

Scale  the  data  simply  by  passing  the  train_X  and  test_X  variable  to

preprocessing.scale command.

4 train_X = preprocessing.scale(train_X)
5 test_X = preprocessing.scale(test_X)

Then,  create  the model architecture.  The model used is  the sequential  model  with

softmax and ReLU activation functions. Here we add the layers one by one. First, we add the

dense  layer.  The  dense  layer  is the  regular  deeply  connected  neural  network  layer  most

commonly  used  for  neural  networks.  The Dense  layer  supplies all  the  outputs  from the

previous layer to all its neurons, and each neuron provides the output to the next layer.

The unit parameter of the dense means the dimensionality of the output space is 200.

The input dimension of the first dense layer is 4096, which is the total number of pixels from

the dataset, a face image with a size of 64 x 64 pixels. Kernel regularizer is a function applied

to  the  kernel  of  the  weights  matrix.  Input  parameter  l2  means  that  we  use  the  L2

regularization  penalty.  The  L2  regularization  penalty  is  computed  as:  loss  =  l2  *

reduce_sum(square(x)).

The next layer is the dropout layer. The Dropout layer is randomly sets input units to 0

at each step during training time. After the model is done, it is compiled with the rmsprop
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optimizer. For the loss function, this project uses sparse categorical crossentropy. It is the

default loss function for multi-class classification problems where each class is assigned a

unique  integer  value  from  0  to  (num_classes  –  1).  The  last  parameter  of  this  compile

command is metrics.  These metrics contain a list of metrics to be evaluated by the model

during training and testing. 

6 model = Sequential([
7 Dense(units=200,  input_dim=4096,  kernel_regularizer=l2(0.0001),

activation='relu'),
8 Dropout(0.2),
9 Dense(units=200,  input_dim=200,  kernel_regularizer=l2(0.0001),

activation='relu'),
10 Dropout(0.2),
11 Dense(units=200,  input_dim=200,  kernel_regularizer=l2(0.0001),

activation='relu'),
12 Dropout(0.1),
13 Dense(units=200,  input_dim=200,  kernel_regularizer=l2(0.0001),

activation='relu'),
14 Dropout(0.1),
15 Dense(units=40, input_dim=200, activation='softmax'),])
16 model.compile(loss='sparse_categorical_crossentropy',
17 optimizer='rmsprop',
18 metrics=['accuracy'])

After that, train the model and count the time consumed to run this code. This training

step will be repeated by changing the dataset split ratio parameters. First, apply the 90:10 ratio

by passing 0.1 to the validation split parameter. In the same way, use the 80:20, 70:30, and

60:40 ratios. Evaluate the model for each training.

33

Figure 5.1: DNN Model Summary



19 h  =  model.fit(train_X,  train_y,  batch_size=50,  epochs=num_epochs,
validation_split = 0.2, verbose=0)

20 finish = time.perf_counter()
21 print(f"Training finished in {finish - start:0.4f} seconds\n")
22 print("Training history: ")
23 for i in range(num_epochs):
24 los = h.history['loss'][i]
25 acc = h.history['accuracy'][i] * 100
26 print("epoch: %5d loss = %0.4f acc = %0.2f%%" \
27 % (i, los, acc))
28
29 eval = model.evaluate(test_X, test_y, verbose=0)
30 print("\nEvaluation on test data: \nloss = %0.4f \
31 accuracy = %0.2f%%" % (eval[0], eval[1]*100) )

 

Now after  the  DNN algorithm is  implemented,  it  is  time  to  implement  the  PCA

algorithm. The first thing to do is to split the dataset into the training and testing set. After

that, find the mean face of the training set.

1 mean_face = np.zeros((1,height*width))
2 print(mean_face)
3
4 for i in training:
5 mean_face = np.add(mean_face,i)
6
7 mean_face = np.divide(mean_face,len(train_images)).flatten()

Then, find the normalized matrix by subtracting each face of the training set from the

mean face. This normalized image contains only the unique features of the faces. 

8 for i in range(len(train_images)):
9 normalised_training[i] = np.subtract(training[i],mean_face)
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Figure 5.2: Training History



The next step is to find the eigenvalues and eigenvectors. To find these values, we

need to count the covariance of the normalized image first. The covariance matrix is a square

matrix denoting the covariance of the elements with each other.

10 cov_matrix = np.cov(normalised_training)
11 eigenvalues, eigenvectors, = np.linalg.eig(cov_matrix)

Sort the Eigenvalues in the descending order and the corresponding Eigenvector to

arrange the principal component in descending order of their variability. Select K number of

Eigenfaces to reduce the data to K number variables. 

12 eigen_pairs = [(eigenvalues[index], eigenvectors[:,index])  for index
in range(len(eigenvalues))]

13 eigen_pairs.sort(reverse=True)
14 sort_eigenvalues =  [eigen_pairs[index][0]  for index  in

range(len(eigenvalues))]
15 sort_eigvectors  =  [eigen_pairs[index][1]  for index  in

range(len(eigenvalues))]
16 reduced_data = np.array(sort_eigvectors[:7]).transpose()

Then, transform the data by dot the transposed reduced data and training data. Then

transpose the result. By transposing the outcome of the dot product, the data is reduced to

lower dimensions from higher dimensions.

17 proj_data = np.dot(training.transpose(),reduced_data)
18 proj_data = proj_data.transpose()

Find the weight for each normalized data. This weight tells us how important that

particular Eigenface is in contributing to the mean face.

19 w = np.array([np.dot(proj_data,i) for i in normalised_training])

Finally,  recognize  all  the  test  images  and analyze  the  accuracy of  the  recognition

results.

20 def recogniser(img, train_images,proj_data,w):
21 global count,highest_min,num_images,correct_pred
22 unknown_face = plt.imread('drive/MyDrive/orl/'+img)
23 num_images += 1
24 unknown_face_vector  =  np.array(unknown_face,

dtype='float64').flatten()
25 normalised_uface_vector = np.subtract(unknown_face_vector,mean_face)
26 w_unknown = np.dot(proj_data, normalised_uface_vector)
27 diff = w - w_unknown
28 norms = np.linalg.norm(diff, axis=1)
29 index = np.argmin(norms)
30 min(norms)
31 t1 = 99999999999
32 t0 = 99999999999
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33 if norms[index] < t1:
34 plt.subplot(80,10,1+count)
35 if norms[index] < t0: # Face is found
36 if img.split('_')[1] == train_images[index].split('_')[1]:
37 plt.title('Matched:'+'.'.join(train_images[index].split('.')[:2]),

color='g')
38 plt.imshow(imread('drive/MyDrive/orl/'+train_images[index]),

cmap='gray')
39 correct_pred += 1
40 else:
41 plt.title('Mismatched:'+'.'.join(train_images[index].split('.')[:2]),

color='b')
42 plt.imshow(imread('drive/MyDrive/orl/'+train_images[index]),

cmap='gray')
43 plt.subplots_adjust(right=1.2, top=2.5)
44 count+=1
45 fig = plt.figure(figsize=(15, 15))
46 for i in range(len(test_images)):
47 recogniser(test_images[i], train_images,proj_data,w)
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5.2. Results

The experiments are done several times with different dataset split ratio parameters for

both algorithms. All of the results can be seen from the tables below.

Table 5.1: DNN Algorithm Results

Iteration Loss Accuracy

Training : 90%
Testing : 10%

I 0.2729 97.50%

II 0.1495 97.50%

III 0.7175 90.00%

IV 0.6295 92.50%

V 0.5469 95.00%

Accuracy average : 94.50%

Training : 80%
Testing : 20%

I 0.5062 92.50%

II 0.2632 97.50%

III 0.6995 92.50%

IV 0.2753 95.00%

V 0.5852 90.00%

Accuracy average : 93.50%

Training : 70%
Testing : 30%

I 0.4724 90.00%

II 0.1589 97.50%

III 0.5163 92.50%

IV 0.9885 92.50%

V 2.4577 85.00%

Accuracy average : 91.50%

Training : 60%
Testing : 40%

I 0.9663 92.50%

II 0.2881 95.00%

III 0.7447 90.00%

IV 0.9142 87.50%

V 1.2623 87.50%

Accuracy average : 90.50%

Training : 50%
Testing : 50%

I 0.8710 91.50%

II 1.2444 87.50%

III 1.1506 87.00%

IV 1.1535 88.00%

V 1.4483 88.00%

Accuracy average : 88.40%
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The results above show that the larger the training data, the more accurate the DNN

algorithm will be, so we can say that the DNN would be more optimum when the training

data is more extensive. The highest accuracy is obtained from experiments with training ratios
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Figure 5.3: DNN Accuracy Model 

Figure 5.4: DNN Loss Model



of 90% and testing of 10%. The accuracy values of these experiments varied from 90% to

97.50%, and the accuracy average after five trials is 94.50%. The accuracy and loss model

shows  that  our  model  is  not  underfitting  nor  overfitting  because  the  train  and  test  are

correlated.

Table 5.2: PCA Algorithm Result

K Correct Prediction Accuracy
(correct prediction /

total test image x
100%)

Training : 90% 5 31 31 / 40 = 77.50%

7 33 33 / 40 = 82.50%

10 34 34 / 40 = 85.00%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 80% 5 32 32 / 40 = 80.00%

7 33 33 / 40 = 82.50%

10 34 34 / 40 = 85.00%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 70% 5 28 28 / 40 = 70.00 %

7 30 30 / 40 = 75.00 %

10 34 34 / 40 = 85.00%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 60% 5 27 27 / 40 = 67.50%

7 31 31 / 40 =  77.50%

10 35 35 / 40 = 87.50%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 50% 5 30 30 / 40 = 75.00%

7 32 32 / 40 = 80.00%

10 36 36 / 40 = 90.00%

12 36 36 / 40 = 90.00%

16 37 37 / 40 = 92.50%
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From the results above, we can see that the PCA algorithm's highest accuracy is 95%.

It is also noticed that the value of the K variable influences the accuracy results. However,

there is no certain value of K; it depends on the dataset used. The value of this variable must

go through trial  and error.  It  is  also seen that  number of  data  used for  training does  not

significantly affect the accuracy, so we can say that the PCA algorithm is good to use when

the dataset is small. 
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Figure 5.5: Face Recognition with PCA Results



Figure 5.4 is a test with taking 80% of the dataset as training data. We can see that the

PCA algorithm achieved an accuracy of 95% with the input of 40 testing images. There are

two misrecognized images: a person with id ten who is mistakenly recognized as a person

with id eight and a woman with id 35 who is recognized as a man with id 40 instead.

41



5.3. Comparison

The accuracy of both algorithms is relatively reliable. The minimum accuracy of the

DNN algorithm is 87.00%, using 50% training data from the total dataset. Meanwhile, the

PCA algorithm works better in certain K values. With 50% training data, the highest accuracy

achieved by the DNN algorithms is 91.50%. With the same ratio of training data, the PCA

algorithm accuracy can reach 92.5%. 

As we can see,  the accuracy of  the two algorithms is  only slightly different.  The

highest accuracy of the DNN algorithm is 97.50%, and the maximum accuracy of the PCA

algorithm is 95%. But there are other factors we need to consider in choosing an algorithm,

such as time of implementation. The project's code is compiled with Google Colab, which has

12GB of RAM. 

Table 5.3: Highest Accuracy of DNN Algorithm

Iteration Loss Accuracy

Training : 90%
Testing : 10%

I 0.2729 97.50%

II 0.1495 97.50%

III 0.7175 90.00%

IV 0.6295 92.50%

V 0.5469 95.00%

Accuracy average : 94.50%

Table 5.4: Highest Accuracy of PCA Algorithm

K Correct Prediction Accuracy
(correct prediction /

total test image x
100%)

Training : 90% 16 38 38 / 40 = 95.00%

Training : 80% 16 38 38 / 40 = 95.00%

Training : 70% 16 38 38 / 40 = 95.00%

Training : 60% 16 38 38 / 40 = 95.00%
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The  DNN  algorithm  takes  about  half  a  minute  to  train  data  with  4096

dimensionalities,  while  the  PCA algorithm needs  three-quarters  of  a  minute.  There  is  no

significant difference in running time because the dataset used is relatively small. But still, the

DNN takes less training and testing time than the PCA algorithm. Both algorithms did not

have any difficulties in terms of computation due to the small and neat dataset. 
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