
CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1. Implementation

For the DNN algorithm, we utilize the sklearn.datasets library to fetch the ORL

dataset. Line number 1 is used to import the Olivetti faces from the sklearn.dataset library.

The parameter of return_X_y is set to true, which returns (data, target) instead of a Bunch

object. The following line stores the data fetched to the variables X and y.

1 from sklearn.datasets import fetch_olivetti_faces
2 X,y = fetch_olivetti_faces(return_X_y=True)

The next step is to split the dataset into training and test sets. Here we give the

parameter X and y, which contains the data and target. The test_size is going to be varied. The

first proportion is 0.1, then 0.2, 0.3, and lastly, 0.4. Set the stratify and random state to

improve the precision of the sample and control the shuffling before applying the split.

3 train_X, test_X, train_y, test_y = train_test_split(X, y,
test_size=0.20, stratify=y, random_state=42)

Scale the data simply by passing the train_X and test_X variable to

preprocessing.scale command.

4 train_X = preprocessing.scale(train_X)
5 test_X = preprocessing.scale(test_X)

Then, create the model architecture. The model used is the sequential model with

softmax and ReLU activation functions. Here we add the layers one by one. First, we add the

dense layer. The dense layer is the regular deeply connected neural network layer most

commonly used for neural networks. The Dense layer supplies all the outputs from the

previous layer to all its neurons, and each neuron provides the output to the next layer.

The unit parameter of the dense means the dimensionality of the output space is 200.

The input dimension of the first dense layer is 4096, which is the total number of pixels from

the dataset, a face image with a size of 64 x 64 pixels. Kernel regularizer is a function applied

to the kernel of the weights matrix. Input parameter l2 means that we use the L2

regularization penalty. The L2 regularization penalty is computed as: loss = l2 *

reduce_sum(square(x)).

The next layer is the dropout layer. The Dropout layer is randomly sets input units to 0

at each step during training time. After the model is done, it is compiled with the rmsprop

32

optimizer. For the loss function, this project uses sparse categorical crossentropy. It is the

default loss function for multi-class classification problems where each class is assigned a

unique integer value from 0 to (num_classes – 1). The last parameter of this compile

command is metrics. These metrics contain a list of metrics to be evaluated by the model

during training and testing.

6 model = Sequential([
7 Dense(units=200, input_dim=4096, kernel_regularizer=l2(0.0001),

activation='relu'),
8 Dropout(0.2),
9 Dense(units=200, input_dim=200, kernel_regularizer=l2(0.0001),

activation='relu'),
10 Dropout(0.2),
11 Dense(units=200, input_dim=200, kernel_regularizer=l2(0.0001),

activation='relu'),
12 Dropout(0.1),
13 Dense(units=200, input_dim=200, kernel_regularizer=l2(0.0001),

activation='relu'),
14 Dropout(0.1),
15 Dense(units=40, input_dim=200, activation='softmax'),])
16 model.compile(loss='sparse_categorical_crossentropy',
17 optimizer='rmsprop',
18 metrics=['accuracy'])

After that, train the model and count the time consumed to run this code. This training

step will be repeated by changing the dataset split ratio parameters. First, apply the 90:10 ratio

by passing 0.1 to the validation split parameter. In the same way, use the 80:20, 70:30, and

60:40 ratios. Evaluate the model for each training.

33

Figure 5.1: DNN Model Summary

19 h = model.fit(train_X, train_y, batch_size=50, epochs=num_epochs,
validation_split = 0.2, verbose=0)

20 finish = time.perf_counter()
21 print(f"Training finished in {finish - start:0.4f} seconds\n")
22 print("Training history: ")
23 for i in range(num_epochs):
24 los = h.history['loss'][i]
25 acc = h.history['accuracy'][i] * 100
26 print("epoch: %5d loss = %0.4f acc = %0.2f%%" \
27 % (i, los, acc))
28
29 eval = model.evaluate(test_X, test_y, verbose=0)
30 print("\nEvaluation on test data: \nloss = %0.4f \
31 accuracy = %0.2f%%" % (eval[0], eval[1]*100))

Now after the DNN algorithm is implemented, it is time to implement the PCA

algorithm. The first thing to do is to split the dataset into the training and testing set. After

that, find the mean face of the training set.

1 mean_face = np.zeros((1,height*width))
2 print(mean_face)
3
4 for i in training:
5 mean_face = np.add(mean_face,i)
6
7 mean_face = np.divide(mean_face,len(train_images)).flatten()

Then, find the normalized matrix by subtracting each face of the training set from the

mean face. This normalized image contains only the unique features of the faces.

8 for i in range(len(train_images)):
9 normalised_training[i] = np.subtract(training[i],mean_face)

34

Figure 5.2: Training History

The next step is to find the eigenvalues and eigenvectors. To find these values, we

need to count the covariance of the normalized image first. The covariance matrix is a square

matrix denoting the covariance of the elements with each other.

10 cov_matrix = np.cov(normalised_training)
11 eigenvalues, eigenvectors, = np.linalg.eig(cov_matrix)

Sort the Eigenvalues in the descending order and the corresponding Eigenvector to

arrange the principal component in descending order of their variability. Select K number of

Eigenfaces to reduce the data to K number variables.

12 eigen_pairs = [(eigenvalues[index], eigenvectors[:,index]) for index
in range(len(eigenvalues))]

13 eigen_pairs.sort(reverse=True)
14 sort_eigenvalues = [eigen_pairs[index][0] for index in

range(len(eigenvalues))]
15 sort_eigvectors = [eigen_pairs[index][1] for index in

range(len(eigenvalues))]
16 reduced_data = np.array(sort_eigvectors[:7]).transpose()

Then, transform the data by dot the transposed reduced data and training data. Then

transpose the result. By transposing the outcome of the dot product, the data is reduced to

lower dimensions from higher dimensions.

17 proj_data = np.dot(training.transpose(),reduced_data)
18 proj_data = proj_data.transpose()

Find the weight for each normalized data. This weight tells us how important that

particular Eigenface is in contributing to the mean face.

19 w = np.array([np.dot(proj_data,i) for i in normalised_training])

Finally, recognize all the test images and analyze the accuracy of the recognition

results.

20 def recogniser(img, train_images,proj_data,w):
21 global count,highest_min,num_images,correct_pred
22 unknown_face = plt.imread('drive/MyDrive/orl/'+img)
23 num_images += 1
24 unknown_face_vector = np.array(unknown_face,

dtype='float64').flatten()
25 normalised_uface_vector = np.subtract(unknown_face_vector,mean_face)
26 w_unknown = np.dot(proj_data, normalised_uface_vector)
27 diff = w - w_unknown
28 norms = np.linalg.norm(diff, axis=1)
29 index = np.argmin(norms)
30 min(norms)
31 t1 = 99999999999
32 t0 = 99999999999

35

33 if norms[index] < t1:
34 plt.subplot(80,10,1+count)
35 if norms[index] < t0: # Face is found
36 if img.split('_')[1] == train_images[index].split('_')[1]:
37 plt.title('Matched:'+'.'.join(train_images[index].split('.')[:2]),

color='g')
38 plt.imshow(imread('drive/MyDrive/orl/'+train_images[index]),

cmap='gray')
39 correct_pred += 1
40 else:
41 plt.title('Mismatched:'+'.'.join(train_images[index].split('.')[:2]),

color='b')
42 plt.imshow(imread('drive/MyDrive/orl/'+train_images[index]),

cmap='gray')
43 plt.subplots_adjust(right=1.2, top=2.5)
44 count+=1
45 fig = plt.figure(figsize=(15, 15))
46 for i in range(len(test_images)):
47 recogniser(test_images[i], train_images,proj_data,w)

36

5.2. Results

The experiments are done several times with different dataset split ratio parameters for

both algorithms. All of the results can be seen from the tables below.

Table 5.1: DNN Algorithm Results

Iteration Loss Accuracy

Training : 90%
Testing : 10%

I 0.2729 97.50%

II 0.1495 97.50%

III 0.7175 90.00%

IV 0.6295 92.50%

V 0.5469 95.00%

Accuracy average : 94.50%

Training : 80%
Testing : 20%

I 0.5062 92.50%

II 0.2632 97.50%

III 0.6995 92.50%

IV 0.2753 95.00%

V 0.5852 90.00%

Accuracy average : 93.50%

Training : 70%
Testing : 30%

I 0.4724 90.00%

II 0.1589 97.50%

III 0.5163 92.50%

IV 0.9885 92.50%

V 2.4577 85.00%

Accuracy average : 91.50%

Training : 60%
Testing : 40%

I 0.9663 92.50%

II 0.2881 95.00%

III 0.7447 90.00%

IV 0.9142 87.50%

V 1.2623 87.50%

Accuracy average : 90.50%

Training : 50%
Testing : 50%

I 0.8710 91.50%

II 1.2444 87.50%

III 1.1506 87.00%

IV 1.1535 88.00%

V 1.4483 88.00%

Accuracy average : 88.40%

37

The results above show that the larger the training data, the more accurate the DNN

algorithm will be, so we can say that the DNN would be more optimum when the training

data is more extensive. The highest accuracy is obtained from experiments with training ratios

38

Figure 5.3: DNN Accuracy Model

Figure 5.4: DNN Loss Model

of 90% and testing of 10%. The accuracy values of these experiments varied from 90% to

97.50%, and the accuracy average after five trials is 94.50%. The accuracy and loss model

shows that our model is not underfitting nor overfitting because the train and test are

correlated.

Table 5.2: PCA Algorithm Result

K Correct Prediction Accuracy
(correct prediction /

total test image x
100%)

Training : 90% 5 31 31 / 40 = 77.50%

7 33 33 / 40 = 82.50%

10 34 34 / 40 = 85.00%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 80% 5 32 32 / 40 = 80.00%

7 33 33 / 40 = 82.50%

10 34 34 / 40 = 85.00%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 70% 5 28 28 / 40 = 70.00 %

7 30 30 / 40 = 75.00 %

10 34 34 / 40 = 85.00%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 60% 5 27 27 / 40 = 67.50%

7 31 31 / 40 = 77.50%

10 35 35 / 40 = 87.50%

12 36 36 / 40 = 90.00%

16 38 38 / 40 = 95.00%

Training : 50% 5 30 30 / 40 = 75.00%

7 32 32 / 40 = 80.00%

10 36 36 / 40 = 90.00%

12 36 36 / 40 = 90.00%

16 37 37 / 40 = 92.50%

39

From the results above, we can see that the PCA algorithm's highest accuracy is 95%.

It is also noticed that the value of the K variable influences the accuracy results. However,

there is no certain value of K; it depends on the dataset used. The value of this variable must

go through trial and error. It is also seen that number of data used for training does not

significantly affect the accuracy, so we can say that the PCA algorithm is good to use when

the dataset is small.

40

Figure 5.5: Face Recognition with PCA Results

Figure 5.4 is a test with taking 80% of the dataset as training data. We can see that the

PCA algorithm achieved an accuracy of 95% with the input of 40 testing images. There are

two misrecognized images: a person with id ten who is mistakenly recognized as a person

with id eight and a woman with id 35 who is recognized as a man with id 40 instead.

41

5.3. Comparison

The accuracy of both algorithms is relatively reliable. The minimum accuracy of the

DNN algorithm is 87.00%, using 50% training data from the total dataset. Meanwhile, the

PCA algorithm works better in certain K values. With 50% training data, the highest accuracy

achieved by the DNN algorithms is 91.50%. With the same ratio of training data, the PCA

algorithm accuracy can reach 92.5%.

As we can see, the accuracy of the two algorithms is only slightly different. The

highest accuracy of the DNN algorithm is 97.50%, and the maximum accuracy of the PCA

algorithm is 95%. But there are other factors we need to consider in choosing an algorithm,

such as time of implementation. The project's code is compiled with Google Colab, which has

12GB of RAM.

Table 5.3: Highest Accuracy of DNN Algorithm

Iteration Loss Accuracy

Training : 90%
Testing : 10%

I 0.2729 97.50%

II 0.1495 97.50%

III 0.7175 90.00%

IV 0.6295 92.50%

V 0.5469 95.00%

Accuracy average : 94.50%

Table 5.4: Highest Accuracy of PCA Algorithm

K Correct Prediction Accuracy
(correct prediction /

total test image x
100%)

Training : 90% 16 38 38 / 40 = 95.00%

Training : 80% 16 38 38 / 40 = 95.00%

Training : 70% 16 38 38 / 40 = 95.00%

Training : 60% 16 38 38 / 40 = 95.00%

42

The DNN algorithm takes about half a minute to train data with 4096

dimensionalities, while the PCA algorithm needs three-quarters of a minute. There is no

significant difference in running time because the dataset used is relatively small. But still, the

DNN takes less training and testing time than the PCA algorithm. Both algorithms did not

have any difficulties in terms of computation due to the small and neat dataset.

43

	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	f8050ae9b74e30f096261ff47d3d7a41fc022bc8b3ea777d3313a39a6661e137.pdf
	24d49f1f577217403f6014415b71c549206a9e17725c70e29898954dbd3f2549.pdf
	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	STATEMENT PAGE OF SCIENTIFIC WORK PUBLICATION FOR ACADEMIC PURPOSE
	ACKNOWLEDGMENT
	ABSTRACT
	Face recognition is one technology that is commonly used now. Even our mobile phones use this technology as a security lock. Therefore, various algorithms continue to be developed to obtain maximum results with minimum costs. One of them is the Deep Neural Network or DNN algorithm. This DNN algorithm is part of the machine learning field. While DNN requires a large dataset to train the algorithm, another algorithm called the Principal Component Analysis (PCA) algorithm works good in a smaller dataset. These algorithms are compared to know which algorithm has the better result in given circumstances. Later the accuracy, speed, and optimality of the algorithms are analyzed. This project also examines the most preferable and optimum algorithms within the cases.
	By comparing these algorithms, we could know which algorithm is preferable based on your needs. First, fetch the Olivetti faces dataset with the help of the Sklearn dataset library and split the dataset into two parts; training set and testing set. Then, the DNN algorithm is trained using the training set. After that, the model trained is tested with the testing set. The same step is also done for the PCA algorithm. After the result is obtained, we can conclude which algorithm is better within the given condition.
	After the experiment is done, we can assume that the two algorithms have a s light difference in terms of accuracy. Also, the time used for running the PCA implementation code is slightly longer than DNN. However, that does not mean that the PCA algorithm is not great. If the dataset to be used is limited, PCA is going to be a good choice.
	Keyword: Deep Neural Network, Principal Component Analysis, Face Recognition
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Problem Formulation
	1.3. Scope
	1.4. Objective

	CHAPTER 2 LITERATURE STUDY
	CHAPTER 3 DATASET AND ALGORITHM
	3.3. PCA

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results
	5.3. Comparison

	CHAPTER 6 CONCLUSION

	c4a9009370e0f92ca9664d74275c52d9dfa318de305a6f4343398475f1fd3e1d.pdf
	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	CHAPTER 3 DATASET AND ALGORITHM
	3.3. PCA

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results
	5.3. Comparison

	CHAPTER 6 CONCLUSION

	90e3502fc7fd7373c0e7f7029cfbd29e98cb6d114d920d540a23093b35f3d200.pdf
	Report #14310419

