
CHAPTER 4

ANALYSIS AND DESIGN

4.1. Analysis

One of this project's goals is to find the performance of the DNN and PCA algorithms

in terms of accuracy and speed. The analysis process involves the following steps :

1. Fetch the ORL faces dataset using sklearn and split it into training and test sets

2. Create the DNN model; this model uses ReLU and softmax as its activation

functions

3. Train the dataset using the model that has been compiled

4. Calculate and analyze the accuracy of the DNN algorithm with the given

circumstance

5. The dataset used for the PCA algorithm is in the image format, so we need to

convert them into the ndarray data type

6. Calculate the mean face of the dataset. The mean face is the average feature of

the datasets

7. After that, find the normalized faces by subtracting each face in the dataset by

the mean face. This normalized face is an extracted or unique feature of each

face

8. Calculate the eigenvector using the covariance matrix of the normalized faces

matrix

9. Select best eigenvector as much as K, where K is less than the total training

images and can represent the whole training set

10. Convert lower-dimensional K eigenvectors to the original face dimensionality

11. Calculate weight vector for each face

12. Calculate the distance between the weight of each input vector and all the

 weight vectors of the training set

13. Calculate and analyze the accuracy of the PCA algorithm under the given

 circumstance

14. Compare the accuracy between the DNN and the PCA algorithms

28

4.2. Design

Python is used as the primary computing language for this project. The reasons for

choosing Python are because of its one of the most accessible programming languages

available. It has simplified syntax, which gives more emphasis on natural language. Due to its

ease and various tools, Python codes can be easily written and executed faster than the other

programming languages.

The code of this project is run in the Google Colaboratory or Google Colab. Google

Colab is a hosted Jupyter notebook that does not requires setup. The reason of using Google

Colab is because it is an excellent tool that provides free access to Google computing

resources such as Tensor Processing Unit or TPUs and Graphical Processing Unit or

abbreviated as GPUs.

The dataset used for the PCA algorithm is stored in Google Drive, while the dataset

used for the DNN algorithm is directly fetched using the sklearn library.

As the first step, we're going to implement the DNN algorithm using the Keras library.

Keras is one example of a deep learning API written in Python, running on TensorFlow's

machine learning platform. It was developed with a focus on enabling fast experimentation.

The core data structures of Keras are layers and models. The simplest type of the model is a

linear stack of layers called the Sequential Model.

Before starting the learning process, we need to fetch the dataset using sklearn

datasets and split it into a train and test set using the sklearn model selection. Preprocess the

train and test set with the help of sklearn preprocessing, which standardizes a dataset along

any axis. The next step of the process is to create the model. The model used is a sequential

model consisting of 9 layers with softmax and ReLU as the activation functions. Compile the

model with the RMSprop optimizer. RMSprop is a gradient-based optimization technique

used in neural networks training. Gradients in a very complicated functions, such as neural

networks tend to explode or may disappear as the data is propagating through a function.

RMSprop addresses this issue by normalizing the gradient using a moving average of the

quadratic gradient. After the model is compiled, start the training and evaluate the loss and

accuracy of the model using the test data.

29

Next, implement the PCA algorithm. The image dataset is stored on Google Drive, so

we need to integrate the Google Colab by mounting the Google Drive. Convert all of the

image datasets into ndarray using the NumPy library. NumPy is a Python library used to

manipulate arrays. We need to find the mean face of the dataset to remove all the dataset's

common features. By subtracting each face image from the mean face, we get each image's

unique feature, called normalized images. PCA is done by decompose the covariance matrix,

so compute the covariance of the normalized images and find the eigenfaces. Then, find a K

number of significant eigenface that can represent the whole training set. They must not leave

out any important information about the data that we have. Then, calculate the weight of each

eigenface. These weights are the proportions of each eigenface to make up each person's face

in the dataset. Then we analyze the accuracy by giving the algorithm a test set.

30

Figure 4.1: DNN Implementation Flowchart

Now, after we implement the DNN and PCA algorithm, compare and analyze these

two algorithms in terms of time and accuracy in given circumstances.

31

Figure 4.2: PCA Implementation Flowchart

	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	f8050ae9b74e30f096261ff47d3d7a41fc022bc8b3ea777d3313a39a6661e137.pdf
	24d49f1f577217403f6014415b71c549206a9e17725c70e29898954dbd3f2549.pdf
	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	STATEMENT PAGE OF SCIENTIFIC WORK PUBLICATION FOR ACADEMIC PURPOSE
	ACKNOWLEDGMENT
	ABSTRACT
	Face recognition is one technology that is commonly used now. Even our mobile phones use this technology as a security lock. Therefore, various algorithms continue to be developed to obtain maximum results with minimum costs. One of them is the Deep Neural Network or DNN algorithm. This DNN algorithm is part of the machine learning field. While DNN requires a large dataset to train the algorithm, another algorithm called the Principal Component Analysis (PCA) algorithm works good in a smaller dataset. These algorithms are compared to know which algorithm has the better result in given circumstances. Later the accuracy, speed, and optimality of the algorithms are analyzed. This project also examines the most preferable and optimum algorithms within the cases.
	By comparing these algorithms, we could know which algorithm is preferable based on your needs. First, fetch the Olivetti faces dataset with the help of the Sklearn dataset library and split the dataset into two parts; training set and testing set. Then, the DNN algorithm is trained using the training set. After that, the model trained is tested with the testing set. The same step is also done for the PCA algorithm. After the result is obtained, we can conclude which algorithm is better within the given condition.
	After the experiment is done, we can assume that the two algorithms have a s light difference in terms of accuracy. Also, the time used for running the PCA implementation code is slightly longer than DNN. However, that does not mean that the PCA algorithm is not great. If the dataset to be used is limited, PCA is going to be a good choice.
	Keyword: Deep Neural Network, Principal Component Analysis, Face Recognition
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Problem Formulation
	1.3. Scope
	1.4. Objective

	CHAPTER 2 LITERATURE STUDY
	CHAPTER 3 DATASET AND ALGORITHM
	3.3. PCA

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results
	5.3. Comparison

	CHAPTER 6 CONCLUSION

	c4a9009370e0f92ca9664d74275c52d9dfa318de305a6f4343398475f1fd3e1d.pdf
	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	CHAPTER 3 DATASET AND ALGORITHM
	3.3. PCA

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results
	5.3. Comparison

	CHAPTER 6 CONCLUSION

	90e3502fc7fd7373c0e7f7029cfbd29e98cb6d114d920d540a23093b35f3d200.pdf
	Report #14310419

