
CHAPTER 3

DATASET AND ALGORITHM

3.1. Dataset

The dataset used in this project is the Olivetti faces dataset acquired by AT&T

Laboratories Cambridge between April 1992 and April 1994. This dataset contains 40 classes

and have different facial details such as the lighting, facial expressions, and accessories like

glasses or no glasses. All the images were using a dark and homogeneous background, with

the subject in an upright front position and able to withstand for some lateral movements. The

image is quantized to 256 grey levels and stored as an unsigned 8-bit integer. The target of

this database is an integer from 0 to 39, indicating the person's identity pictured.

The sklearn.datasets package helps the machine learning researchers to fetch large

datasets that they use to benchmark algorithms. This module also includes some utilities such

as load datasets, fetch reference datasets, and generates artificial data. There are three main

functions of sklearn: general dataset API, dataset loaders, and dataset fetchers. This project

uses sklearn.datasets as datasets that download and load larger datasets from the real

world. Further detailed information about the dataset is explained later. The

sklearn.datasets functions return an object called Bunch. The Bunch object is a dictionary

that has key as an attribute.

As stated above, the dataset is managed as the training and testing data. Because of

that, the dataset must be split into two parts. To do this process,

sklearn.model_selection.train_test_split is used. The train-test split is a technique

20

Figure 3.1: SKLearn

for evaluating the performance of a machine learning algorithm. There are some parameters in

this quick utility, such as test_size, train_size, random_state, shuffle, and stratify.

The test_size parameter represents the proportion of the dataset to be set as test subsets,

likewise, with the train_size parameter. These parameters should have some variation in the

experiment to measure the algorithm's accuracy, and there is no absolute value. It all depends

on the dataset and the project's objective found from experimental trials. The random_state

parameter controls the shuffling applied to the data before splitting. This parameter intends to

control the random number generation used so that consistency is ensured. Integer random

seeds 42 is used to fill this parameter. The shuffle parameter is to determine whether or not

to shuffle the data before splitting. The last parameter is stratify, which does a split. Our

dataset has a various number of data for each class. It is advisable to splits the dataset into the

train sets and test sets in the same proportions of data in each class. As shown in the Figure

3.2 below, the splitting proportion is equal for each class. In this way, the train and test sets

contain all of the classes on the dataset.

Meanwhile, the ORL dataset used for the PCA algorithm is processed from the image

data type. This data was obtained from the kaggle by Marlon Tavarez with 400 images that

will be manually split into two parts: the training and the test sets. The images data are

already labeled with the image id and the person id, separated by the underscore symbol (_).

21

Figure 3.2: Stratify Illustration

For example, label 10_1 means the photo with id ten (10) belongs to person number 1. Later,

these images are switched into the ndarray shape.

22

Figure 3.3: ORL
Image 10_1.jpg

3.2. Deep Neural Network

Artificial Intelligence (AI) is a technology developed to 'think' like the works of the

human brain. Inside AI, there are other subfields: machine learning, expert systems, and

natural language processing, to name a few. However, machine learning is the most popular

field at this cultural moment [16], and Deep Neural Networks (DNNs) are currently the state-

of-the-art ML algorithms [17]. The DNN is a machine learning member with multiple layers

between the input and output layers. Each layer of DNN uses the output from the previous

layer as input which is very similar to how the human brain transmits information from one

neuron to another. Figure 3.4 [18] shows the typical architecture of DNN consists of an input

layer, some hidden layers, and the output layer.

The model used in this project is a sequential model. The sequential model is suitable

for a plain stack of layers with only one input tensor and one output tensor. This model allows

us to build a model layer by layer. Each layer has weights that correspond to the layer that

follows it. Those multiple layers are non-linear processing units, often called activation

functions, used for feature extraction and transformation. There are some activation functions

such as Rectified Linear Activation (ReLU), Logistic (Sigmoid), and Hyperbolic Tangent

(Tanh). Meanwhile, this project uses the ReLU and softmax activation function. More details

are explained below.

ReLU is an activation function that has a biological and mathematical base. It works

by thresholding values at 0, i.e., as shown in Figure 3.5 ReLU activation function [19], when

the output value is less than 0, convert the value to 0. Conversely, it outputs a linear function

when the output value is more than 0, unlike the tanh and sigmoid activation functions, which

23

Figure 3.4: Typical Architecture of DNN

approximate a zero output, e.g., a value very close to zero but not an actual zero value. The

ReLU also did not require exponential calculation, so the computations are cheaper [20].

Emphasized by Krizhevsky et al. as cited in Wu and Deng, 2016, the ReLU function's

advantages include faster training speed, decreased saturation problems, a smaller number of

epochs, and usually fewer samples.

The softmax function is used to calculates the probability of each target class from all

probable target classes. It is used as the activation function of the output layer of a neural

network model that predicts a polynomial probability distribution. The probability is used to

determine the target class for the specified inputs. These probability values are ranged from 0

to 1, and if we sum all of the probabilities, it will equal to 1. Later, the calculated probabilities

will be used for determining the target class of the inputs. If we use the softmax function for

the multi-classification model, it will returns the probabilities of each class. Here in Figure 3.6

[21] show a graphical representation of the softmax activation function.

Figure 3.7 below shows the softmax function formula that calculates the ratio of the

exponential of the input value and the sum of the exponential values.

24

Figure 3.5: ReLU Activation Function

Figure 3.6: Graphic
Representation of
Softmax Function

25

 For example, we have an array with three values [
2
9
7
]. These values could be the output

of the machine learning model, but with the softmax function, we convert those values into a

probability distribution.

𝑒𝑧1 = 𝑒2 = 7.39

𝑒𝑧2 = 𝑒9 = 8130.08

𝑒𝑧3 = 𝑒7 = 1096.63

Then, sum all three exponentials to obtain the normalization term.

∑ 𝑒𝑧𝑗𝐾
𝑗=1 = 𝑒𝑧1 + 𝑒𝑧2 + 𝑒𝑧3 = 7.39 + 8130.08 + 1096.63 = 9234.1

From the value, we can see that z2 dominates the normalization term. The next step is

to divide each of the array values to z2.

𝜎(𝑧)1 =
7.39

9234.1
= 0.0008

𝜎(𝑧)2 =
8130.08

9234.1
= 0.8804

𝜎(𝑧)1 =
1096.63

9234.1
= 0.1188

Three output values lie between 0 and 1, and also they sum to 1.

𝝈(�⃗⃗�)𝒊 =
𝒆𝒛𝒊

∑
𝑲

𝒋 = 𝟏
𝒆𝒛𝒋

Figure 3.7: Softmax

Formula

3.3. PCA

In 1991, Turk and Pentland suggested an approach to face recognition that uses

dimensionality reduction and linear algebra concepts. This approach is commonly used as it is

computationally less expensive and easy to implement. Principal component analysis (PCA)

is a technique used to reduce the dimensions of a dataset. This method works by transforming

a large set of variables into smaller ones containing most of the information while minimizing

information loss. Smaller datasets make data analyzing easier and faster for machine learning.

PCA is one of the oldest and most widely used algorithms. The PCA can be divided into five

main steps.

1. Normalize the dataset

Subtract the mean of each variable from the dataset to normalizing them. This

step means that we are removing the "common features" we got from the mean

of the dataset.

2. Compute the covariance matrix

To know if there is a correlation in the input dataset's variables, compute the

covariance matrix of normalized data. It's the value of covariance that matters.

If the value is positive, then the two variables are correlated. If negative, then

it is uncorrelated

3. Compute the eigenvectors and eigenvalues from the covariance matrix

From the covariance matrix, compute the eigenvectors and eigenvalues.

Eigenvector is a nonzero vector that does not change direction when a

transformation is applied. Meanwhile, the eigenvalue is a scalar associated

with eigenvectors. Let us assume A is an "n × n" matrix, λ is an eigenvalue of

matrix A, and x (a nonzero vector) is called an eigenvector if it satisfies Ax =

λx expression.

4. Sort the eigenvalues in descending order and select a subset from the

rearranged Eigenvalues matrix

26

Each column in the eigenvector matrix corresponds to a principal component.

The principal components are new variables constructed as a linear

combination that uncorrelated, and most of the information within the initial

variables is squeezed or compressed. Arranging the eigenvalues in descending

order of their eigenvalue will also set the principal component by their

variability. Then, select a subset or from the arranged eigenvalue that captures

the highest variability.

5. Transform the data

Compute a dot product between the transpose of the eigenvector subset and the

transpose of the normalized data. The outcome of this step is data that is

reduced to lower dimensions.

27

	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	f8050ae9b74e30f096261ff47d3d7a41fc022bc8b3ea777d3313a39a6661e137.pdf
	24d49f1f577217403f6014415b71c549206a9e17725c70e29898954dbd3f2549.pdf
	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	STATEMENT PAGE OF SCIENTIFIC WORK PUBLICATION FOR ACADEMIC PURPOSE
	ACKNOWLEDGMENT
	ABSTRACT
	Face recognition is one technology that is commonly used now. Even our mobile phones use this technology as a security lock. Therefore, various algorithms continue to be developed to obtain maximum results with minimum costs. One of them is the Deep Neural Network or DNN algorithm. This DNN algorithm is part of the machine learning field. While DNN requires a large dataset to train the algorithm, another algorithm called the Principal Component Analysis (PCA) algorithm works good in a smaller dataset. These algorithms are compared to know which algorithm has the better result in given circumstances. Later the accuracy, speed, and optimality of the algorithms are analyzed. This project also examines the most preferable and optimum algorithms within the cases.
	By comparing these algorithms, we could know which algorithm is preferable based on your needs. First, fetch the Olivetti faces dataset with the help of the Sklearn dataset library and split the dataset into two parts; training set and testing set. Then, the DNN algorithm is trained using the training set. After that, the model trained is tested with the testing set. The same step is also done for the PCA algorithm. After the result is obtained, we can conclude which algorithm is better within the given condition.
	After the experiment is done, we can assume that the two algorithms have a s light difference in terms of accuracy. Also, the time used for running the PCA implementation code is slightly longer than DNN. However, that does not mean that the PCA algorithm is not great. If the dataset to be used is limited, PCA is going to be a good choice.
	Keyword: Deep Neural Network, Principal Component Analysis, Face Recognition
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1 INTRODUCTION
	1.1. Background
	1.2. Problem Formulation
	1.3. Scope
	1.4. Objective

	CHAPTER 2 LITERATURE STUDY
	CHAPTER 3 DATASET AND ALGORITHM
	3.3. PCA

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results
	5.3. Comparison

	CHAPTER 6 CONCLUSION

	c4a9009370e0f92ca9664d74275c52d9dfa318de305a6f4343398475f1fd3e1d.pdf
	1fca84614fc298df7f941b7cd681080b46c25bc2b11389814d45f25a97fb6028.pdf
	CHAPTER 3 DATASET AND ALGORITHM
	3.3. PCA

	CHAPTER 4 ANALYSIS AND DESIGN
	4.1. Analysis
	4.2. Design

	CHAPTER 5 IMPLEMENTATION AND RESULTS
	5.1. Implementation
	5.2. Results
	5.3. Comparison

	CHAPTER 6 CONCLUSION

	90e3502fc7fd7373c0e7f7029cfbd29e98cb6d114d920d540a23093b35f3d200.pdf
	Report #14310419

