
27

CHAPTER 5

IMPLEMENTATIONAND RESULTS

5.1. Implementation

The computing language that is used in this research is Python and with the help of

google colab to run the program, the author choose google drive to store the zipped dataset

and input images. All the dataset and input images consist of raw data therefore data

preprocessing is required so it can be used for the mass estimation model.

5.1.1. Remove Input Image Background to Transparent

1 img = cv.imread('/tmp/inputtopview.jpg', cv.IMREAD_UNCHANGED)
2 imagecopy = img.copy()
3
4 kernele = np.ones((8, 8), 'uint8')
5 kerneld = np.ones((4, 4), 'uint8')
6
7 filter = cv.cvtColor(img, cv.COLOR_BGR2HSV)
8 filter = cv.cvtColor(filter, cv.COLOR_HSV2RGB)
9 filter = cv.cvtColor(filter, cv.COLOR_RGB2GRAY)
10 filter = cv.GaussianBlur(filter, (17, 17), 17)
11 filter = cv.erode(filter, kernele, iterations=3)
12 filter = cv.Canny(filter, 23, 23)
13 filter = cv.dilate(filter, kerneld, iterations=3)
14
15 _, thresh = cv.threshold(filter, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)
16 kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))
17 mask = cv.morphologyEx(thresh, cv.MORPH_CLOSE, kernel, iterations=4)
18
19 data = mask.tolist()
20 sys.setrecursionlimit(10**8)
21 for i in range(len(data)):
22 for j in range(len(data[i])):
23 if data[i][j] != 255:
24 data[i][j] = -1
25 else:
26 break
27 for j in range(len(data[i])-1, -1, -1):
28 if data[i][j] != 255:
29 data[i][j] = -1
30 else:
31 break
32 image = np.array(data)
33 image[image != -1] = 255
34 image[image == -1] = 0imag
35
36 mask = np.array(image, np.uint8)
37 main = cv.bitwise_and(imagecopy, imagecopy, mask=mask)
38 main[mask == 0] = 255
39 cv.imwrite('/tmp/topviewextracted.jpg', main)
40 img = Image.open('/tmp/topviewextracted.jpg')
41 img.convert("RGBA")
42 datas = img.getdata()
43

28

44 datas2 = []
45 for item in datas:
46 if item[0]==255 and item[1]==255 and item[2]==255:
47 datas2.append((255, 255, 255, 0))
48 else:
49 datas2.append(item)
50
51 img.putdata(datas2)
52 img.save("/tmp/topviewextractedtr.png", "PNG")
53 plt.imshow(img)

The first line is to read the input image we are going to use for volume estimation.

Same code works for input image top view and side view. As to discuss the code line, on the

above code the author uses the top view image only. Second line is to copy the image so that

it can be used later on line 37 to mask the image. The fourth and fifth is to initialize the kernel

that is going to be used for erosion in line 11 and dilation in line 13.

Lines 7 to 13 is to convert color and filter the image to have a clean edge cut. As cv2

reads the image in BGR so the image needs to be converted to HSV to have a big color

difference between the object and the background like in line 7. Next is to turn the image to

RGB like in line 8 and to convert it again to grayscale. With grayscale, it increases the color

difference and is easier for canny detection. There’s a slight difference by using HSV or

grayscale on but the edge can be cut more precisely with HSV. The next step is to add

Gaussian Blur like in line 10 reasons behind this are to eliminate unwanted noise whether on

the object or the background since the author calculates the area by object’s image for the

more accurate result is not counting the noise and eliminating them.

The next line is to use erosion with kernel (8,8) that have been mentioned before with

3 iterations by erode it helps the resulting image to not have a black border around the object

as the result of Gaussian blur. Line 12 is canny edge detection to detect the object edge

accurately. On line 13 is dilation with the kernel (4,4) and 3 iterations, dilation helps the

object to have a better edge cut unlike without dilation where the edge cut is too small and

untidy. After finishing to identify the precise edge, the result needs to be thresholded. The

author uses Otsu’s Thresholding like in line 15 and the next line, 16 is to determine the kernel.

Here the structuring element is used to provide an elliptical/circular kernel instead of numpy

which provides a rectangular shaped kernel since most of our object is centered and round

shaped.

Next is to use closing from cv2 morphologyEx in line 17 which consists of dilation

followed by erosion to remove noises and create a better edge result for the mask with 4

29

iterations. Next line which is 19 is to store the mask in list form and for the next line 20 set

recursion limit is needed to have deeper recursion limit in order to avoid any crashes. Line 21

is for looping each line and line 22 with 27 is to loop every pixel color. The difference

between those two lines is line 22 is started from the front pixel of the list while 27 is started

from behind, the last pixel on the row. Inside of the second loop there's a decision part where

if the loop meets 255 in the row member then the loop will break like in line 26 and 31 if not

then it will be replaced by -1 like in line 24 and 29. So if in the row there’s 255 the loop will

break the same with the second row looping which is from behind so only the center pixel is

left considering the result before is an edge detection, in other words only the lined edge of

the object (255) in the picture. To have a white color (255) blocked inside the border to

represent the object. On line 32 the result is saved into a new variable so that on line 33 if the

image pixel is not -1 then it will be replaced by 255 which inside of the border all consist of 0

pixel and 255 represent the object. Line 34 is to replace all the -1 to 0 so only the background

will have black color.

Line 36 is to insert the result before to mask variables in list form. Next in line 37 is to

use bitwise AND from OpenCV to select the ‘interesting part’ which is object image only of

the picture by using the mask we have made earlier. Next line 38 is to select all black colour

which is the background to white colour. The result is saved to the tmp folder like in line 40

and for line 41 is to open the image and insert to img variable. Next line 41 is to convert the

image to RGBA and Line 42 is to insert again img pixel in datas variable. Here on line 44

initializing the datas2 variable saves the list of new images later in list form. On line 45 until

49 is to change the picture background from white to transparent. Line 45 is looping to access

all list that has been saved in datas variable. Inside of the loop is the decision which if the

pixel has white colour 255,255,255 then it will be replaced with transparent which is

255,255,255,0 and 0 stands for alpha like in line 46 to 47. If not white colour then the pixel

colour is stayed that way like in line 48 to 49. Next in line 51 is to have it in image form by

using putdata() function and line 52 to save the image final result to the tmp folder. Line 53 is

to show the final image result by using matplotlib. Same steps of the code works for the side

view image too so here as the result the author has two transparent background images which

are top view of the object and side view of the object.

5.1.2. Extract The Zipped Dataset

54 Files = namedtuple('File', 'name path')
55 dataset = []
56 p = Path('/tmp/Training/')

30

57 for item in p.glob('**/*'):
58 name = item.name
59 path = Path.resolve(item).parent
60 dataset.append(Files(name, path))
61
62 dataset

Line 54 is to declare a variable to store the extracted result in tuple form with named

fields. The result later will be stored in the Files variable. Next is to declare a variable dataset

in line 55 to store each of the tuples in list form. Line 56 is to store the selected path where the

dataset is going to be extracted which is '/tmp/Training/'. As for accessing zipped folders and

subfolders, looping and glob is utilized in line 57. Inside of the looping, line 58 is to store

each of the image names in the ‘name’ variable next line 59 is to store the image path in the

‘path’ variable. Last in line 60, after the name and path of the images are obtained, both of

them are stored in a dataset variable which has been declared in line 55 consisting of file

tuples which are image name and path. Line 62 is to print the dataset variable to show the

extracted result.

5.1.3. Image Hash

63 def hashes_calculation(files, hashfunc=imagehash.whash):
64 hashes, names = [], []
65 for i, name in enumerate(files):
66 try:
67 img = Image.open(name)
68 hash = hashfunc(img)
69 hashes.append(hash)
70 names.append(name)
71 except:
72 pass
73
74 return hashes, names

As to calculate the images hash value the author built a function which called

hashes_calculation. Line 63 is to initialize the function with two params which are files to get

the image path and hashfunc to store the built in function from imagehash which is whash

(wavelet hashing). Inside of the function first is to initialize variables that are going to be used

to store the result which are hashed and names like in line 64. Looping is required to access

each of the images and enumerate them in line 65. Line 66 and 71 is for try and except where

try is to test a block of code while except for handles the error. Inside of the try, line 67 is to

open the image with it’s particular path and stored in img variable. Next is to hash the image

with the help of hashfunc which consists of imagehash from line 63 and stored it in a hash

31

variable. Followed by line 69 keeping the hash result in hashes variable and image’s name in

names variable in line 70. Line 72 is pass to avoid any error and the final step is to return the

result which are hashes and names in line 74.

5.1.4. Distance Matrix

75 def distances_calculation(hashes):
76 matrix = np.zeros((len(hashes), len(hashes)))
77 for i, j in combinations(range(len(hashes)), 2):
78 dist = hashes[i] - hashes[j]
79 matrix[i, j] = matrix[j,i] = dist
80 return matrix

After finishing with hash, now is to calculate the distance between each of the images

which the result will be in matrix form. First is to initialize the function like in line 75 which

is distances_calculation and one parameter which is hashes where the list of hash values that

have been calculated is stored. In line 76, 2 dimensional array both with the length of hashes

list is initialized and stored in matrix variable. Followed by looping in line 77 to access every

two images with combinations to help obtain every possible image couple. Inside of the loop

is to calculate the distance of each image by subtracting hash value of both the images and

storing it in dist variable like in line 78. Afterwards, line 79 is to insert the result in the matrix

that has been made earlier. Last is to return the result of this function which is the matrix

consisting of all distances between two images where can be seen in line 80.

5.1.5. Coordinates Form

81 pca = PCA(n_components=2)
82 dist2d = pca.fit_transform(matrix)

Now we have each image's distance in matrix form, to enter DBSCAN coordinates

dataset is required. Besides it is easier for DBSCAN to process, it’s easier to visualize either.

To turn the distance matrix to coordinates a help from PCA is required. In line 81 is to set up

the PCA with total components of 2 because of 2 dimensional vectors which are x and y and

stored in the pca variable. Next, line 82 is to call the PCA built in function which is

fit_transform to transform the distance matrix to coordinates and save in dist2d variable.

5.1.6. DBSCAN Algorithm

Built DBSCAN Object
83 class DBSCAN():
84 def __init__(self):
85 self.core = -1

32

86 self.border = -2

Now the dataset has been transformed into coordinates. This section will discuss how

to build the DBSCAN model. The first step is to create a DBSCAN object like in line 83 by

initializing the DBSCAN class. Next followed by line 84 which is initializing a DBSCAN

constructor. In line 85 is for initializing core and line 86 border points both with arbitrary

value.

Find Neighbour Function
87 def find_neighbour(self, data, point_id, eps):
88 points = []
89 for i in range(len(data)):
90 # Euclidian distance
91 if np.linalg.norm([a_i - b_i for a_i, b_i in zip(data[i], data[point_id])]) <= eps:
92 points.append(i)
93 return points

After initializing the constructor, it’s time to build a function here in line 87 the author

built a find_neighbour function to find neighbours of each data point with 4 params which are

self for represent the instance of the DBSCAN class, data for each of the dataset coordinates

and point_id to represent each of the dataset id, and eps where to determine how close the

distance of a point to be considered as neighbour. In this function Euclidean Distance is

featured in order to find distances between two points. Inside of the function, first is to

initialize the points variable where the result is going to be stored in list form that can be seen

in line 88. In line 89, to access every data point, iteration through every coordinate is required.

Inside of the loop in line 91 is the implementation of Euclidean Distance formula which if the

result is less than equal to eps it’s considered as it’s point neighbour. The point will be stored

in points variable like in line 92 and Last line 93 is the function return which is a points

variable that consists of the final result.

Fit Function
94 def fit(self, data, Eps, MinPts):
95 point_label = [0] * len(data)
96 point_count = []
97
98 core = []
99 border = []
100
101 for i in range(len(data)):
102 point_count.append(self.find_neighbour(data, i, Eps))
103
104 for i in range(len(point_count)):
105 if (len(point_count[i]) >= MinPts):
106 point_label[i] = self.core
107 core.append(i)
108 else:

33

109 border.append(i)
110
111 for i in border:
112 for j in point_count[i]:
113 if j in core:
114 point_label[i] = self.border
115 break
116
117 cluster = 1
118
119 for i in range(len(point_label)):
120 q = queue.Queue()
121 if (point_label[i] == self.core):
122 point_label[i] = cluster
123 for x in point_count[i]:
124 if(point_label[x] == self.core):
125 q.put(x)
126 point_label[x] = cluster
127 elif(point_label[x] == self.border):
128 point_label[x] = cluster
129 while not q.empty():
130 neighbors = point_count[q.get()]
131 for y in neighbors:
132 if (point_label[y] == self.core):
133 point_label[y] = cluster
134 q.put(y)
135 if (point_label[y] == self.border):
136 point_label[y] = cluster
137 cluster += 1
138
139 return point_label, cluster

Calculating distance function has been done now it’s turn to build a clustering

function which is fit function. First is to initialize a Fit function like in line 94 which consists

of 4 params which are self, data, eps, and minPts. Self is to represent the instance of the

DBSCAN class, data for the coordinates dataset, eps will be determined how close the

distance to be considered as a neighbour, and minPts is for minimum data points to be

considered as a cluster. Next line 95 is initializing the point_label variable of the data points

cluster labels which are in list form and [0] here stands for cluster 0 or outliers in other words

all of the data points considered as outliers first. In line 96 point_count variable is initialized

to store the find neighbours function result earlier. After, line 98 is to initialize the core

variable to store all the core points in list form and line 99 is to initialize border points to store

all the border points in list form either.

All the required variables have been initialized. Next line 101 is to iterate through all

the dataset and line 102 inside of the loop is the function we have made earlier

find_neighbour to find all the neighbours of particular data points and the result is stored in

the point_count variable.

34

Each point has its own neighbours but it needs to be defined which points are core

points, border points, and outliers. It starts with iteration to access every data point like in line

104. Inside of the loop is decision therefore in line 105 if the point has more than equal to

minPts which minimum points than it’s point is considered as core point like in line 106 and

line 107 is to store core point in core variable. Then if the point doesn’t fulfill the

requirements then the point goes into the else in line 108 and in line 109 the point is stored in

the border variable. Followed by another iteration in line 111 for every point in the border list

which is to confirm whether the point is border point or core point. Line 112 is another

iteration to access it’s particular point in point_count variable. Inside or two iteration in line

113 is a decision if the particular point in the core list then it’s point_label is replaced with a

border like in line 114 and line 115 is to break the loop.

After determining which point is the core point and which point is the border point

now it’s turn to form the clusters. In line 117 cluster variable is initialized to count the number

of clusters formed. The count starts from one. Followed by iteration in line 119 to access

every point label. In line 120 is to initialize q which consists of queue built in function

Queue() which is a constructor for a FIFO queue. Next is line 121, it’s a decision if the

particular point is in the core list then the point is in the new cluster like in line 122 by

replacing the particular point label. In line 123 there is iteration for every point group in

point_count. Followed by decision in line 124 if a particular point label is considered as a core

point then in line 125 there is put queue function to put an item into the queue until a free slot

is available before the item is added. Before, all point labels are 0 here in line 126 the point

label of a particular point is replaced with the cluster number. Next is line 127 for the else if

decision, if a particular point is in the border point list then in line 128 a particular point label

is replaced with cluster number.

Next line 129 is a while loop as long as the queue is not empty then in line 130 there’s

get queue function to wait until an item in queue is available. Point count of a particular point

is stored in the neighbors variable. In this loop is to check every point of the particular point

neighbour. In line 131, for every point in neighbours variable, if the point is a core point like

in line 132 then the point label of it’s point is replaced with the cluster number as in line 133.

Next line 134 is to be put in queue again. Followed by line 135 if the particular point is border

point then the point label of the particular point is replaced with cluster number either as in

line 136. Line 137 is to initialize the cluster number by adding plus one for every iteration.

Last line in this function is line 139 to return the point label and cluster this function has

35

formed. With this function Breadth First Search is formed by every node in n level then n+1

level and so on.

Visualization Function
140 def visualize(self, data, cluster, clusters_count):
141 N = len(data)
142
143 colors = np.array(list(islice(cycle(['#FE4A49', '#2AB7CA']), 3)))
144
145 for i in range(clusters_count):
146 if (i == 0):
147 color = '#000000'
148 else:
149 color = colors[i % len(colors)]
150
151 x, y = [], []
152 for j in range(N):
153 if cluster[j] == i:
154 x.append(data[j, 0])
155 y.append(data[j, 1])
156 plt.scatter(x, y, c=color, alpha=1, marker='.')
157 plt.show()

To ease reading the clustering result, visualization is needed. Here the visualization

function will be discussed. First is to initialize the visualization function like in line 140

which consists of 4 params. Self, to represent the instance of the DBSCAN class, data is for

the dataset, cluster for the point_labels by fit function, and clusters_count is to get the cluster

number that’s been formed by fit function. Next in line 141 there is N variable to store the

length of the dataset. By line 143 is to store various colors that are going to be used to

represent the clusters by adding them into an array and stored in colors variable. Next in line

145 an iteration is used to access every cluster. Inside of the loop is a decision part in line 146

if the cluster is 0 then in line 147 is to represent the cluster color which is black and where

cluster 0 is an outlier. Else in line 148, if the cluster is not 0 then in line 149 the cluster color

is represented based on colors that have been initialized earlier in line 143.

In line 151, x and y are initialized in order to store the dataset coordinates later. After,

line 152 is an iteration which is needed to access every dataset stored in N. Inside of the loop

there’s a decision that can be seen in line 153 for a particular cluster then x coordinates of the

data points is stored in x variable like in line 154 and y coordinates of the data points is stored

36

in y variable like in line 155. Line 156 is to form the scatter plot of the clustering result by

matplotlib. Last, line 157 is to show the visualization result.

DBSCAN Implementation
158 df = pd.read_csv("/content/ProjectDataset/MyDrive/coordinates.csv")
159 dataset = df.astype(float).values.tolist()
160
161 X = StandardScaler().fit_transform(dataset)
162 DBSCAN = DBSCAN()
163 point_labels, clusters = DBSCAN.fit(X, 0.1, 4)
164 print(point_labels, clusters)
165 DBSCAN.visualize(X, point_labels, clusters)

In this section is where all of the DBSCAN functions we have made are called. First

line 158 is to read our coordinates dataset in csv form for easier callable and stored in df

variable. In line 159, the dataset from df is transformed into list form and stored in the dataset

variable. In line 161 the dataset needs to be normalized in order to have new values but still

maintain general distribution and ratios among the data source while still keeping values

within the scale of all the numeric columns in the model to avoid problems of great difference

values to scale in the modelling. After the dataset has been normalized, now begin the

DBSCAN clustering. In line 162 the DBSCAN object is created and stored in the DBSCAN

variable. Next line 163 is to call the fit function with 3 parameters to be sent which are the

normalized dataset, determined eps and minPts to be saved into point_labels and clusters

variable. Line 164 is to print the point_labels and clusters result. Last is line 165 to call the

visualization function which consists of 3 parameters X stands for the normalized dataset,

point_labels and clusters from the fit function result.

5.1.7. Input Image Cluster

166 pntlbl = int(input_img['Point Labels'])
167 filter_data = all_files[all_files['Point Labels'] == pntlbl]
168 filter_data

This section is to filter only images that belong to the same cluster as the input image

is taken to become k-NN training data, the other cluster is dropped. Point Labels represent the

cluster number. First is to find what the input image cluster number like that have been done

in line 166 and the result is stored in pntlbl variable. Next is to filter the data which is to find

all the dataset images that have the same number of point labels as the input image like in line

167, the result is stored in filter_data variable and line 168 is to present them.

37

5.1.8. k-NN Algorithm

Euclidian Distance Function
169 def euclidean_distance(vec1, vec2):
170 distance = 0.0
171 for i in range(len(vec1)-1):
172 distance += (vec1[i] - vec2[i])**2
173 return sqrt(distance)

After the data has already been filtered, only images with the same cluster with the

input image are left. Here the data becomes k-NN training data and the goal is to find the

closest point with the input image. To build the k-NN algorithm started by building the

calculation. To calculate the distance between two vectors the author uses Euclidean Distance.

Started by initializing the euclidean distance function which has 2 params vec1 and vec2

where vec1 stands for the input image coordinate that becomes the reference and vec2 stands

for all the training dataset coordinates that can be seen in line 169. Next is to initialize the

distance variable like in line 170 that is going to be used. In line 171 an iteration is used in

order to iterate every item in the test dataset but the test image that is used in this model is 1

so only 1 iteration. Inside of the loop there is the Euclidean Distance formula in line 172

which is to subtract vector 1 (test image) with vector 2 (training image) and square them then

the result is stored in distance variable. This function returns the square root of the distance

variable which consists of the square result like in line 163.

Get Neighbours Function
174 def get_neighbors(train, test_row, num_neighbors):
175 distances = list()
176 for train_row in train:
177 dist = euclidean_distance(test_row, train_row)
178 distances.append((train_row, dist))
179 distances.sort(key=lambda tup: tup[1])
180 neighbors = list()
181 for i in range(num_neighbors):
182 neighbors.append(distances[i][0])
183 return neighbors

The distance calculation function has been done now it’s turn to make a function to

find the closest neighbours of the input image. In line 174, the get_neighbours function is

initialized with 3 params, those are train for the dataset, test_row for the reference which is

input image, and num_neighbors is for the k value. In line 175 distances variable is declared

to save data in list form. Followed by iteration for every item in the train dataset like in lime

176. Inside of the loop can be found a euclidean_distance function. Here in line 177 the

38

euclidean function is called to count distance between reference coordinate and particular

train dataset coordinate, the result is stored in dist variable. Next is to store the train

coordinates and it’s distance in distances variable like in line 178. Here in line 179 is to sort

the result stored in distances variable based on the closest one with the input image.

Afterwards another variable is initialized in line 180 which is neighbours to store data in list

form. Another iteration is used in line 181 based on the k value that has been determined.

Inside of the loop is line 182 where the distance variable is being called. This iteration is used

in order to find the closest distance based on k value. In this model the author uses 2 k values

so only 2 iterations which is the input image and one point that have the closest distance with

the input image. Last line in this function is 183 where this function returns the neighbours

variable consisting of the final result.

K-NN Implementation
184 n = []
185 dataset = dist2d2
186 neighbors = list(get_neighbors(dataset, dataset[0], 2))
187 n = n + neighbors
188 print (n)

After finishing building all the required functions, the final step is to call the

get_neighbours function that has been built earlier. First in line 184 is to declare n variable to

store data in list form. Next, line 185 is to store the normalized dataset in dataset variable.

After, in line 186 the get_neighbors function is called and the result is stored in neighbors

variable in list form. In line 187 the neighbors variable is being added into n variable that has

been made earlier. Line 188 is to display the final result which consists of the reference

coordinate which is the input image and a coordinate of the closest point with the input image.

Now we have the final result about what the input image object is based on what object has

the closest distance with the input image.

5.1.9. Get Object’s Density

189 final_dense = dens[dens['Fruit'] == fr]
190 density = float(final_dense['Density (g/cm3)'])

After the object has been successfully identified, the object's density is required. Start

by finding the object’s density from the stored density which has the same object’s name. Line

189 is to select the row which has the same object’s name and store it in the final_dense

39

variable. Line 190 is to select the density of the selected object and store it in the density

variable. Now the object’s density has been acquired.

5.1.10.Volume Calculation

Black Background Transformation
191 image = skimage.io.imread(fname='/tmp/topviewextractedtr.png')
192 blur = skimage.color.rgb2gray(image)
193 mask = blur < 0.98
194 blackbg = np.zeros_like(image)
195 blackbg[mask] = image[mask]
196 skimage.io.imshow(blackbg)

In order to estimate the object’s volume, area calculation and object’s height is

required. Since all the input images have a transparent background, both of the input images,

top view and side view need to be transformed to have a black background for easier

calculation. Start by reading the selected image, for the first section the input image is the

object's top view and stored in the image variable. Here in line 191 skimage is used in the

reason skimage reads images in RGB. Next is to transform the image to grayscale and store

the result in a blur variable like in line 192. After, in line 193 blurring effect is being added

and the result stored in the mask variable. In line 193, blackbg is being declared consisting of

black color image with the same feature as the image. Next is both of the black background

and image is being masked based on the transformed blurred image resulting in combined

result with only the background being changed into black. With black background threshold

for the next section can be done easier and more precisely. In this section only the top view

image is being presented, same steps happen for the side view image either.

Area Calculation
197 img = blackbg
198 height = img.shape[0]
199 width = img.shape[1]
200 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
201 ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY)
202 plt.imshow(thresh)
203 count = cv2.countNonZero(thresh)
204 area = count*0.14*0.14/(width*height)
205 print(area)

Object’s area calculation is performed by calculating the non zero pixel. First step is

by reading the object’s top view image that has been transformed to black background like in

line 197. Next, in line 198 image height is being calculated and in line 199 image width is

being calculated. Afterwards the image is transformed into grayscale like in line 200. After it

40

is finished turning into grayscale and stored into a gray variable, the image needs to be

thresholded like in line 201. Turning a black and white image and stored in the thresh variable.

Next in line 202 is to show the result of threshold. To calculate the area is to count the non

zero pixel considering only the image background is black or zero so the object or non zero

pixel is being calculated like in line 203. The calculated result is being stored in the count

variable. In line 204, the area is calculated by multiplying count with 0.14 which represents

the ground area or dimensions in meters and divided by multiplied images height and width,

the result is stored in the area variable. Line 205 is to show the result.

Height Calculation
206 img = blackbg2
207 gray2 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
208 ret, thresh2 = cv2.threshold(gray2,0,255,cv2.THRESH_BINARY)
209 plt.imshow(thresh2)
210
211 image = skimage.io.imread(fname='/tmp/sideviewextractedtr.png')
212 x,y,w,h = cv2.boundingRect(thresh2)
213 cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
214 cv2.putText(image, "w={},h={}".format(w,h), (x,y -

10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (36,255,12), 2)
215 plt.imshow(image)
216 print(h)

Next step is to calculate the object’s height. Same steps as been mentioned before

where the side view image needs to be transformed to have a black background either. After

the side view image has a black background, it is stored in an img variable like in line 206.

Next in line 207 the image is transformed into grayscale, the result stored in gray2 variable

and in line 208 the image is thresholded, the result stored in thresh2 variable. Line 209 is to

show the threshold result. Same steps with the top view image, the top view image uses the

non zero pixels to calculate the object’s area but here the side view image uses non zero pixels

to draw a bounding box and estimate the object height.

In line 211 the input image is being read and stored to the image variable. Side view

input image is used as a background where the bounding box is drawn. Next line 212 is to

create a bounding box according to non zero pixels from the threshold result where x,y is the

top left coordinate of the rectangle and w,h is it’s width and height. In line 213 a rectangle

bounding box with green color is being drawn. Line 214 is to put text on the top left of the

bounding box. Next, line 215 is to show the image with the bounding box result consisting of

the object's height and width. Last is line 216 is to print the object’s height. Object’s height

has been found.

41

Objects Volume
217 V = round((area*10000))*round((h/100)/2)

Object’s density and height has been obtained and by multiplying them, volume can

be acquired. In order to have a real size estimation, the object's area needs to be multiplied by

10000 and the object's height needs to be divided by 100 and again by 2 because the object’s

real size height is half of the result. In line 217, by multiplying area and height the result is

the object's volume and object’s volume is being stored in the V variable.

5.1.11.Object’s Mass Estimation

218 M = density * V
219 round(M)

Last but not least is to calculate the goal of this model which is the object's mass.

Object’s density and object’s volume has been acquired, by multiplying them the object’s

mass can be found. In line 218 the object’s mass is being calculated and the result is stored in

the M variable. Followed by line 219 where the result is being rounded. Object’s mass has

been found.

5.2. Results

5.2.1. DBSCAN Algorithm

Table 5.1: DBSCAN Time and Cluster Test Result 1

No. Eps, minPts Training Data 10 Training Data 20
Time Cluster Time Cluster

1. 0,1 2 5m 4s 128 22m 35s 116
2. 0,1 3 5m 2s 99 22m 38s 81
3. 0,1 4 5m 3s 90 22m 39s 61
4. 0,1 5 5m 3s 80 22m 37s 50
5. 0,1 6 5m 0s 69 22m 23s 47

42

Table 5.2: DBSCAN Time and Cluster Test Result 2

No. Eps, minPts Training Data 30 Training Data 40
Time Cluster Time Cluster

1. 0,1 2 47m 59s 105 1h 39m 5s 94
2. 0,1 3 46m 15s 82 1h 38m 41s 71
3. 0,1 4 46m 6s 70 1h 28m 14s 65
4. 0,1 5 46m 39s 58 1h 26m 40s 58
5. 0,1 6 46m 34s 59 1h 26m 30s 54

5.2.2. Object Identification

10 Kinds in Training Data (4.802 images)
Table 5.3: Object Identification Result of 10 Fruit Kinds

No, Objects Name Identified (Eps ; Minpts)
0,1 ; 2 0,1 ; 3 0,1 ; 4 0,1 ; 5 0,1 ; 6

1. Apple Red Delicious Yes Yes Yes Yes Yes
2. Blueberry Yes Yes Yes Yes Yes
3. Cantaloupe 2 Yes Yes Yes Yes Yes
4. Cocos Yes Yes Yes Yes No
5. Dragon Fruit Yes Yes Yes Yes Yes
6. Guava Yes Yes Yes Yes Yes
7. Lemon Yes Yes Yes Yes Yes
8. Onion White Yes Yes Yes Yes Yes
9. Orange Yes Yes Yes Yes Yes
10. Tomato Yes Yes Yes Yes Yes

20 Kinds in Training Data (10.207 images)
Table 5.4: Object Identification Result of 20 Fruit Kinds

No, Objects Name Identified (Eps ; Minpts)
0,1 ; 2 0,1 ; 3 0,1 ; 4 0,1 ; 5 0,1 ; 6

1. Apple Granny Smith Yes Yes Yes Yes Yes
2. Apple Red No No No No No
3. Blueberry Yes Yes Yes Yes Yes
4. Cantaloupe 2 Yes Yes Yes Yes Yes
5. Cocos Yes Yes Yes No No

43

6. Corn Yes Yes Yes Yes Yes
7. Dragon Fruit Yes Yes Yes Yes Yes
8. Lemon Yes Yes Yes Yes Yes
9. Orange Yes Yes Yes Yes Yes
10. Pepper Red No No No No No

5.2.3. Object’s Area

Apple
Table 5.5: Mass Estimation Result of 6 Apples

No. Fruits Distances Estimated
Area (cm)

Estimated
Height (cm)

Estimated
Mass (g)

Real Mass
(g)

1. Apple 1 15 cm 23 9 199 139
17 cm 21 8 161 139
19 cm 17 8 131 139
21 cm 16 6 92 139
23 cm 12 6 69 139
25 cm 11 5 53 139

2. Apple 2 15 cm 45 11 475 161
17 cm 36 9 311 161
19 cm 28 8 215 161
21 cm 23 7 155 161
23 cm 18 6 104 161
25 cm 16 6 92 161

3. Apple 3 15 cm 41 11 433 160
17 cm 34 9 294 160
19 cm 25 8 192 160
21 cm 21 7 141 160
23 cm 16 6 92 160
25 cm 11 6 63 160

4. Apple 4 15 cm 24 8 184 164
17 cm 24 9 207 164
19 cm 17 8 131 164
21 cm 16 7 108 164
23 cm 12 6 69 164
25 cm 12 6 69 164

44

5. Apple 5 15 cm 30 6 173 156
17 cm 21 7 141 156
19 cm 16 7 108 156
21 cm 14 6 81 156
23 cm 13 6 75 156
25 cm 11 6 63 156

6. Apple 6 15 cm 26 9 225 159
17 cm 17 9 147 159
19 cm 16 8 123 159
21 cm 14 7 94 159
23 cm 13 13 162 159
25 cm 11 6 63 159

Lemon
Table 5.6: Mass Esimation Result of 6 Lemons

No. Fruits Distances Estimated
Area (cm)

Estimated
Height (cm)

Estimated
Mass (g)

Real Mass
(g)

1. Lemon 1 15 cm 27 12 295 107
17 cm 21 11 211 107
19 cm 19 9 156 107
21 cm 14 8 102 107
23 cm 13 7 83 107
25 cm 11 6 60 107

2. Lemon 2 15 cm 30 12 328 113
17 cm 24 10 219 113
19 cm 17 9 140 113
21 cm 13 8 95 113
23 cm 13 7 83 113
25 cm 9 7 57 113

3. Lemon 3 15 cm 35 12 383 107
17 cm 25 10 228 107
19 cm 18 8 131 107
21 cm 13 7 83 107
23 cm 10 7 64 107
25 cm 8 6 44 107

45

4. Lemon 4 15 cm 23 11 231 110
17 cm 19 9 156 110
19 cm 14 8 102 110
21 cm 12 8 88 110
23 cm 10 7 64 110
25 cm 8 6 44 110

5. Lemon 5 15 cm 25 10 228 108
17 cm 18 9 148 108
19 cm 14 7 89 108
21 cm 12 7 77 108
23 cm 10 6 55 108
25 cm 8 6 44 108

6. Lemon 6 15 cm 25 10 228 108
17 cm 18 9 148 108
19 cm 14 7 89 108
21 cm 12 7 77 108
23 cm 10 6 55 108
25 cm 8 6 44 108

Orange
Table 5.7: Mass Estimation Result of 6 Oranges

No. Fruits Distances Estimated
Area (cm)

Estimated
Height (cm)

Estimated
Mass (g)

Real Mass
(g)

1. Orange 1 15 cm 53 10 546 237
17 cm 37 8 305 237
19 cm 32 7 231 237
21 cm 28 6 173 237
23 cm 22 5 113 237
25 cm 20 5 103 237

2. Orange 2 15 cm 68 10 700 250
17 cm 47 8 387 250
19 cm 35 7 252 250
21 cm 30 6 185 250
23 cm 26 6 161 250
25 cm 22 5 113 250

46

3. Orange 3 15 cm 64 10 659 237
17 cm 49 8 404 237
19 cm 39 7 281 237
21 cm 32 6 198 237
23 cm 25 6 154 237
25 cm 23 5 118 237

4. Orange 4 15 cm 58 9 538 209
17 cm 39 7 281 209
19 cm 33 6 204 209
21 cm 27 5 139 209
23 cm 20 5 103 209
25 cm 20 5 103 209

5. Orange 5 15 cm 38 9 352 205
17 cm 28 8 231 205
19 cm 27 7 195 205
21 cm 26 6 160 205
23 cm 18 5 93 205
25 cm 19 5 98 205

6. Orange 6 15 cm 53 10 546 236
17 cm 36 8 297 236
19 cm 31 7 224 236
21 cm 28 6 173 236
23 cm 23 5 118 236
25 cm 19 5 98 236

Average Accuracy Result
Table 5.8: Average Accuracy of Apples

No. Object’s Name Accuracy No. Objects’s Name Accuracy
1. Apple 1 94,2% 4. Apple 4 79,9%
2. Apple 2 96,3% 5. Apple 5 90,4%
3. Apple 3 88,1% 6. Apple 6 92,4%

Average 90,2%

47

Table 5.9: Average Accuracy of Lemons

No. Object’s Name Accuracy No. Objects’s Name Accuracy
1. Lemon 1 95,3% 4. Lemon 4 92,7%
2. Lemon 2 84% 5. Lemon 5 82,4%
3. Lemon 3 77,6% 6. Lemon 6 82,4%

Average 85,7%

Table 5.10: Average Accuracy of Oranges

No. Object’s Name Accuracy No. Objects’s Name Accuracy
1. Orange 1 97,5% 4. Orange 4 97,6%
2. Orange 2 99,2% 5. Orange 5 95,1%
3. Orange 3 83,5% 6. Orange 6 94,9%

Average 94,6%

Figure 5.1: Cluster and minPts Regression
Linear 1

Figure 5.2: Cluster and minPts Regression
Linear 2

48

Figure 5.3: Cluster and minPts Regression
Linear 3

Figure 5.4: Cluster and minPts Regression
Linear 4

The first test is the author uses 10, 20, 30, and 40 training data to measure time and

cluster that has been formed by DBSCAN. eps stands for neighbourhood radius and minPts

stands for minimum point to form a cluster. Here the author uses 0,1 for the eps to have a

detailed result as every close point is counted. As for the result from Table 5.1 and 5.2, The

higher the value of the minPts the less time it is required and less cluster is formed. Can be

seen that minPts has a nonlinear relationship with time and cluster amount.

Next is to test the success of this algorithm by identifying objects. First test is held for

10 kinds of fruit each which consist of total of 4.802 images. Can be seen in Table 5.3 where

all the object has successfully identified out of all the tests except Cocos with minPts 0,6 that

misidentified as apple red delicious.

Another test is held with 20 kinds of fruit that consist of 10.207 images. And the result

is not as good as the previous one, because although more data is loaded, each fruit has the

same portion of train data. Out of 20 kinds of fruits there are 2 kinds that are not identified

which are apple red and pepper red, besides the same as previous one this model fails in

identifying cocos in high value of minPts which are 5 and 6.

Next is the mass estimation is tested within 3 kinds of fruit which are apples, lemons,

and oranges each with 6 amounts of fruits. Out of 6 apples being tested, the closest one is the

2nd apple with 6 grams different and 96,3% accuracy. Next is the lemons, out of 6 lemons

being tested the closest one with their real mass is the first lemon which has 5 grams

difference and 95,3% accuracy with it’s real mass. Next is the orange, here the 2nd orange

being tested and the result is 2 grams different and 99,2% accuracy with the orange real mass.

49

Out of 18 fruits with distances of 15, 17, 19, 21, 23, and 25, most of the results

achieve the highest accuracy in distance of 19cm between the camera and the object. Among

all the highest results obtained, the author calculated the average accuracy with 90,2% for the

apples, 85,7% for the lemons, and 94,6% for the oranges.

Figure 5.1 to 5.4 represent the relationship between minPts and the amount of cluster

formed. Here minPts and clusters from 10, 20, 30, and 40 training data in table 5.1 and 5.2 are

represented with Regression Linear graph and all the results are proved that minPts and the

amount of clusters formed have a nonlinear relationship which the higher value of minPts the

smaller amount of cluster formed.

	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	ABSTRACT (Style : Abstract Title)
	Many real-world applications can be acquired from
	Using the object’s top view and side view photos,
	In the volume estimation model, an area calculatio
	It was found that this model is able to estimate a
	Keyword: mass measurement, image processing, objec
	TABLE OF CONTENTS
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1INTRODUCTION
	1.1.Background
	1.2.Problem Formulation
	1.3.Scope
	1.4.Objective

	CHAPTER 2LITERATURE STUDY
	CHAPTER 3RESEARCH METHODOLOGY
	3.1.Data Collection
	3.2.Algorithm
	3.3.Design
	3.4.Coding
	3.5.Analysis

	CHAPTER 4ANALYSIS AND DESIGN
	4.1.Dataset Preparation
	4.2.Dataset Preprocessing
	4.2.1.Input Image Preprocessing
	4.2.2.Dataset Preprocessing

	4.3.DBSCAN
	4.4.K-NN
	4.5.Object’s Volume Estimation
	4.6.Object’s Mass Estimation
	4.7.Analysis

	CHAPTER 5IMPLEMENTATION AND RESULTS
	5.1.Implementation
	5.1.1.Remove Input Image Background to Transparent
	5.1.2.Extract The Zipped Dataset
	5.1.3.Image Hash
	5.1.4.Distance Matrix
	5.1.5.Coordinates Form
	5.1.6.DBSCAN Algorithm
	Built DBSCAN Object
	Find Neighbour Function
	Fit Function
	Visualization Function
	DBSCAN Implementation

	5.1.7.Input Image Cluster
	5.1.8.k-NN Algorithm
	Euclidian Distance Function
	Get Neighbours Function
	K-NN Implementation

	5.1.9.Get Object’s Density
	5.1.10.Volume Calculation
	Black Background Transformation
	Area Calculation
	Height Calculation
	Objects Volume

	5.1.11.Object’s Mass Estimation

	5.2.Results
	5.2.1.DBSCAN Algorithm
	5.2.2.Object Identification
	10 Kinds in Training Data (4.802 images)
	20 Kinds in Training Data (10.207 images)

	5.2.3.Object’s Area
	Apple
	Lemon
	Orange
	Average Accuracy Result

	CHAPTER 6CONCLUSION
	REFERENCES
	APPENDIX

	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf

