
15

CHAPTER 4

ANALYSIS AND DESIGN

This study project is proposed to estimate an individual object’s real mass by using 2D

images with the help of DBSCAN clustering and k-NN classification. By using object

detection and image processing, the volume of the object can be calculated and matched with

the density table as the final result, the object's mass can be estimated. This goal is

approached with the following steps :

4.1. Dataset Preparation

There are two sections to this model, the first one is image identification and the

second one is volume and mass estimation. To perform this study, the fruits and vegetable

dataset from Kaggle take major roles as the first section’s main dataset. To identify the

success of the first section which is image identification, 131 kinds of fruits and vegetables

from Kaggle are collected but since the author is using google colab and due to lack of colab

12GB ram, only a few kinds of fruit and vegetables will be used. The author chooses a few

kinds of fruit and vegetables based on common items which are easily found in daily life. 10,

20, 30, and 40 kinds of fruits will be collected for further analysis to see if the more dataset

affects the time and object detection result. These images dataset are typically 100x100 pixels

and easier for image processing especially since each image has a white background already

consisting of 360-degree images.

Table 4.1: Fruits and Vegetables Kinds Dataset Table

No. Kinds Fruits and Vegetables
1. 10 Apple Red Delicious, Blueberry, Cantaloupe 2, Cocos, Dragon Fruit,

Guava, Lemon, Onion White, Orange, Tomato
2. 20 Apple Granny Smith, Apple Red, Apple Red Delicious, Blueberry,

Cantaloupe 2, Cherry, Cocos, Corn, Dragon Fruit, Guava, Lemon, Limes,
Mulberry, Onion White, Orange, Pepper Green, Pepper Red, Pepper

Yellow, Tomato, Watermelon



16

Table 4.2: Kaggle Dataset Examples

Fruits and Vegetables
Kinds

Images Dataset Examples

No. Name 1 2 3 4 5
1. Apple Red

2. Apple Red
Delicious

3. Cantaloupe 2

4. Corn

5. Guava



17

As for the second section, selected fruits and vegetable images that were taken by the

iPhone X camera will be used for the second section’s main dataset which the author calls by

input image one from the object's top view and the other one from the object's side view. The

top view is to calculate the object’s area and the side view to calculate the object’s height

where the author is going to multiply them in the end to find the object's mass. Images with

different kinds, shapes, colors of fruit will be taken to identify the effectiveness of these

programs. Each with a different image shooting distances which are 15, 17, 19, 21 cm. Each

image taken by iPhone X consists of 3024 x 4032 pixels. As for the result, we can see these

models can estimate an object's volume and mass accurately with particular shapes or colors

or shooting distances that the author is going to analyze.

Table 4.3: Input Image Examples

Fruits and Vegetables Kinds Image Distances
No. Name 15 17 19 21 23 25

1. Apple Red
Delicious

2. Lemon

3. Orange



18

4.2. Dataset Preprocessing

4.2.1. Input Image Preprocessing

As for the first step, the author stored the dataset and input image on google drive,

while the author run the code in google colab so integration between the two platforms is

required. After both platforms have mounted, the next thing to do is to call and extract needed

files to google colab. The next thing to do is to copy input images from the google drive path

to the tmp folder in google colab with a determined name. In other words, the input images

are copied and renamed. The reason behind this is for easier to call images on the model later

which are inputtopview.jpg and inputsideview.jpg.

To improve the area calculation of the input images, as for the first step input images’

background will be turned into white color. The reason why the author does not just take

objects with an HVS background for the input image is that the object's shadow will be

terminated and calculated for the area and produce inaccurate results considering taking an

image without even slight shadow is hard. This step is used for both input image top view and

side view.

The first step is to read the selected image which the first one is the top view image

later same steps are used for the side view. After the author stored the image copy on a new

variable in order to create an image mask. The goal of this model is to extract an object from

its background accurately and the result is extracted object which has the most perfect edge.

By converting image color space to another color it makes the object have significant color

difference so the object’s edge can be seen clearly and can be extracted precisely.

The image needs to be transformed into HSV first to have a clear color difference

between the object and the background. After HSV, input images are turned into RGB and

then grayscale to have an increased sight of color difference. The output has a slight

difference by using HSV the object tends to have a more precise edge cut. Afterward,

gaussian blur is added to give a blur effect where it will reduce. After gaussian blur, the

object’s image requires to be eroded because by using gaussian blur only and canny edge

detection, the object output has a black border around the cropped object as the effect of the

blurred edge. Next, after the object has successfully eroded, the object’s edge is obtained by

using Canny edge detection. Followed by dilation either because by using canny only, a

particular part of the object gets cut off too so dilation increases the preciseness of the object’s

edge.



19

Afterwards the result will be transformed to a threshold. By using Otsu’s Thresholding,

the optimal global threshold value will be determined from an image histogram. Since most of

the objects tend to have elliptical/circular shapes, then an elliptical/circular kernel is needed

here cv2 is provided a structuring element function instead of using NumPy which has a

rectangular-shaped kernel. After by using closing from cv2 morphologyEx function which

consists of a dilation followed by erosion in order to remove noises on the object. The result is

still in edge form where only the edge line has a different color from the background like in

Figure 1, to be used as a mask, it needs to have a different color inside the edge which is the

object so looping here and replacing pixel is needed where pixel inside the edge has a bright

color and the background have a dark color like in Figure 2 as the result.

Figure 4.1: Data Preprocessing Result Figure 4.2: Mask Transformation

The following result will be masked into the input image so only the interesting part

of the image is left and the rest will be in white color. After the image with white background

is saved in the tmp folder with jpg format so that the next step is to replace all white pixels

with transparent can be done easily by opening the image and converting to RGBA followed

by converting the list into a buffer then recreating the image. Last is to save and show the

image result. Result image is saved in the tmp folder provided with google colab with a

determined name for easier to call later which is topviewextractedtr.png. Exact same steps

happen for the side view image either but with a different saved image result name which is

sideviewextracted.jpg for the side view image with white background and

sideviewextractedtr.png for a transparent background and both of them in the tmp folder too.

4.2.2. Dataset Preprocessing

After we have done the input images preprocessing, it’s the object's dataset turn which

is extracted from the google drive path that has been mounted before to the provided tmp

folder with “Training” as for the subfolder name for easier callables that consist of sub



20

subfolders with each fruits and vegetables kinds name as the sub subfolders name. After the

zipped dataset has been successfully extracted, the next step is to have a side view image for

the fruits and vegetables identification by adding new sub subfolders ‘Input Image’ inside the

folder Training. Inside of the sub subfolders ‘Input Image’ where we place the side view of

the input image by using a copy file command from google drive path to the new path and

rename it with ‘inputimage.jpg’. For easier processing of the data, the input side view image

is stored within the same subfolder with the dataset but with a different sub subfolder which is

“Input Image”.

To read all the files within the specified folder, the author uses the glob module

provided by python and stores them in the tuple. The tuple consists of each image's dataset

path and name. For easier readable format data frame from pandas is used. Here the author

can see the path with the dataset name easier and eliminate irrelevant data paths.

The dataset consists of raw images data that needs to be preprocessed for an

understandable format. Since the DBSCAN algorithm works best with dataset in coordinate

form, to acquire coordinates, first all dataset images need to be transformed in hash form.

Dataset that is used for this research consists of images. The author chose hash instead of

calculating the image RGB or pixel value because similar images tend to have similar hash

value unlike other options. Imagehash package is required to transform the images dataset to

hash form where we need to install it first in google colab.

The author creates 2 functions, one to calculate the hash and the other one to calculate

the distance from the hash. The first function name is hashes_calculation which the parameter

will consist of an image path and to call whash (wavelet hashing) from imagehash which is

stored in hashfunc variable. Wavelet hashing using DWT (Discrete Wavelet Transformation)

instead of DCT (Discrete Cosine Transform) like other options and whash is famous for it’s

great result either. First, declare the used variable which is hashes and names. Next with

looping of each image dataset so every image in the dataset folder can be calculated to hash

form. Inside of the looping is to open the image and use the hashfunc to calculate image hash

and store them in hashes variable while names variable stored each of images name, both in

list form. As for the result, the function returns hashes and names.

After all the images dataset has successfully turned into hash form, distance matrix

will be calculated. The next function is distance calculation to find the distance between each

image. First to declare a ‘matrix’ variable which has a matrix form with the length of the

column and rows is the same as the hash length. Afterward looping is required to access every



21

image hash in the list. By using combinations from python the loop can access every possible

combination of the list so distances between each of two images can be found and stored in

the matrix variable that we have declared earlier and return the matrix.

From here with the help of PCA from sklearn, coordinates of each image can be

acquired by using PCA with components of 2 and the result ready to enter the DBSCAN

algorithm. By using coordinates clustering and visualization can be done easier either.

4.3. DBSCAN

To enter the DBSCAN clustering algorithm, the dataset needs to be transformed into

list form and normalized. DBSCAN algorithm depends on eps and minPts value where eps

stands for distance measure to find neighborhood within a point and minPts stands for a

minimum number of points to form a cluster. The first step in the DBSCAN algorithm is to

initialize all data points as outliers. After, the algorithm needs to find the neighbors for each

data point. The core point is initialized where the neighborhood point is equal to or greater

than minPoints. From here, core points, border points, and outliers can be found.

The DBSCAN algorithm is started by creating an object class named DBSCAN where

it can be called easier later. After as for the constructor which is init where this method is

called when an object is created from the class which consists of initializing core and border

points with an arbitrary value.

The first function is find_neighbour where this function will find all the neighbors

which arbitrary points in the dataset have. In this function, the author uses Euclidean Distance

to find the distance between two points. By looping it will access all the data points and

calculate the distance between them. The function will return neighborhoods points that

particular points have and the distance between them is less than equal to determined epsilon

along with storing them in list form on variable points.

The second function is fit which is the core of DBSCAN where this function will

generate clusters based on processed data earlier. After finding all neighbors which each data

point has now it's time to find all the clusters which this dataset has. The first step is to create

a list to store which cluster each of the data points has. Zero here stands for outliers so as

mentioned before all data points are considered as outliers with cluster zero. Next, initializing

core and border as an empty list variables to store core and border points are needed.



22

There are 3 important sections on this function. The first one is to call the function we

have made earlier which is find_neighbour. With the help of looping, each point can find all

of its neighborhood points. In the second section, looping is utilized to find the core and

border points by if any point has more or equal to determined minPts then the point is

considered as a core point if the point doesn’t satisfy the requirement then the point is

considered as border points/outliers. The third section is to cluster each of the data points.

Here the author performs queue data structure and chooses Breadth First Search (BFS) to find

each data point that has been separated by epsilon distance and all the indirectly reachable

points, the neighborhood points of the core can be obtained. If a point is considered as a core

then it will be labeled as a cluster and find all the neighborhoods of the point which the author

has grouped with the previous section and so on with the next cluster with a different core

point. Now all points have been assigned to a cluster or cluster 0 for the outliers. This function

returns point_labels which consist of a list of cluster labels of each point and number of

clusters.

The last section is to visualize the clusters. A Scatter plot from matplotlib will help to

visualize all the data points. Each cluster will be color-coded here the author chooses to have

3 different colors to identify each of the data points where the cluster they belong to but all

the outliers will be colored as black. As for the outcome, each image is a member of a cluster.

The final step is to create a DBSCAN object and to call all of the functions we have

made before which are DBSCAN.fit and completed by DBSCAN.visualize to visualize the

outcome easier.

After we find which cluster our input image belongs to, the rest of the results outside

the input image’s cluster can be dropped. Now the dataset used only consists of images within

the same cluster with the input image. For easier to process the next algorithm input image is

being put at the first row as being the reference to find other images which have the closest

distance to the input image.

4.4. K-NN

After the dataset is filtered and set up, it’s ready for k-NN training data. The first step

is to preprocess the data again by using image hash to distance matrix and with the help of

PCA, coordinate form is obtained. These dataset coordinates will be k-NN training data. k-

NN's main job is to find the closest point with the input image. k-NN uses euclidean distance

to calculate the distance between each point as for the k value to decide which points have the



23

closest relationship with the input image. The first function consists of Euclidean Distance

formula calculation to calculate distance between two data points which return the final result

of square root. With euclidean distance formula as the follows:

� �, � =
�=1

�

�� − �� 2�

The second function is to get neighbors which have 3 params consisting of train data,

test data or selected points (input image point), and a number of neighbors the author is

looking for. First to initialize variables to save each of the distances that have been calculated

between two points by looping and calling the euclidean_distance function that we have made

earlier in list form starting from the closest one. Next is to initialize a new variable to store the

final result which is based on the k value from the param that has been determined. Here the

author chooses the k value of two where only two points will be stored which are the input

image point as the reference and the closest point with the input image. With k value, the

algorithm will determine what the object is based on the closest points with the input image

point. The result of k-NN will determine the success of object detection.

After the object has successfully been detected, the result is matched with the density

table. The density table consists of all fruits and vegetable densities in CSV form. Dataframe

from pandas is used for easier to read and find the matched density of fruit with the object

detection result. Now the object’s density is obtained and required for volume estimation.

4.5. Object’s Volume Estimation

Object volume is needed for mass estimation. Mass and volume of fruits and

vegetables have a linear relationship with their volume. The bigger the object then the heavier

the object is. To calculate the object’s volume top view and side view of the object are needed.

2 input images consist of a top view image and a side view image will be used. Object’s area

calculation from top view image is calculated by using image processing.

In the first section, data preprocessing images with transparent backgrounds have been

acquired. Now the author is going to use those preprocessed images for area calculation and

height estimation.

As for the area calculation, first, we use skimage.io to read the preprocessed top view

image which has a transparent background because skimage will read and display in RGB.

Next, turn the image into RGB and blur the image. After masking the image so that the rest



24

have a black background and only the interesting part of the image is selected. Reasons why

not just turn the background black not using the transparent background first because it won’t

have a clean cut on the object edges. It helps to remove unwanted noises and increase the

precision of edge detection.

Next is to calculate the area by obtaining the height and width of the image first then

convert the image to gray and threshold it. To calculate the area is to count the non-zero pixel

of the image which is the object. Now by counting the non-zero pixels the top area has been

calculated.

Thereafter is height calculation, the same as previous which the image background

needs to be converted to black by reading the image using skimage.io, convert to gray, and

blur to have a clean object with a black background. Next is to convert it to gray and have the

threshold the same as previous but not to calculate area instead to draw bounding boxes

around the non-zero pixel. By creating a rectangle bounding box, the height of the object can

be acquired.

For the side view image, the same steps will be used. The step is a bit different,

grayscale and gaussian blur is still required but the threshold is used to calculate the object

height by using a bounding box of the object. The area calculation result needs to be

multiplied by 100 for the result in centimeters. Object’s height needs to be divided by 100 to

get the result in centimeters.

Last but not least is to calculate the volume, the author will use the following formula

since the object's area and height have been calculated.

������ = ���� × ����ℎ�

The area needs to be multiplied by 1000 to achieve the real size of the area because

earlier calculations provide a decimal result and the height needs to be divided by 100 to

achieve the real size of object height. Next is to multiply them we have the object’s volume.

4.6. Object’s Mass Estimation

Now the object's density and object’s volume have been found. As for the final step,

by using the following formula

� = � × �



25

An object's mass can be calculated. M here stands for mass of the object, ρ is for

object’s density which is the result of object detection matching with the stored density table

and V stands for volume. With these mentioned steps, the object's mass is estimated.

4.7. Analysis

Conducted analysis in order to measure the success of this study is about accuracy

comparison between real mass and estimated mass. The degree comparison result stands for

the closeness between an object's real mass and obtained mass. Accuracy degree formula as

the following.

��������������� =
�������� − ������������ ∗ 100

��������

������������������ = 100 − ���������������



26

Figure 4.3: Real Mass Estimation Flowchart


	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf
	ABSTRACT (Style : Abstract Title)
	Many real-world applications can be acquired from 
	Using the object’s top view and side view photos, 
	In the volume estimation model, an area calculatio
	It was found that this model is able to estimate a
	Keyword: mass measurement, image processing, objec
	TABLE OF CONTENTS
	LIST OF FIGURE
	LIST OF TABLE
	CHAPTER 1INTRODUCTION
	1.1.Background
	1.2.Problem Formulation
	1.3.Scope
	1.4.Objective

	CHAPTER 2LITERATURE STUDY
	CHAPTER 3RESEARCH METHODOLOGY
	3.1.Data Collection
	3.2.Algorithm
	3.3.Design
	3.4.Coding
	3.5.Analysis

	CHAPTER 4ANALYSIS AND DESIGN
	4.1.Dataset Preparation
	4.2.Dataset Preprocessing
	4.2.1.Input Image Preprocessing
	4.2.2.Dataset Preprocessing

	4.3.DBSCAN 
	4.4.K-NN
	4.5.Object’s Volume Estimation
	4.6.Object’s Mass Estimation
	4.7.Analysis

	CHAPTER 5IMPLEMENTATION AND RESULTS
	5.1.Implementation
	5.1.1.Remove Input Image Background to Transparent
	5.1.2.Extract The Zipped Dataset
	5.1.3.Image Hash
	5.1.4.Distance Matrix
	5.1.5.Coordinates Form
	5.1.6.DBSCAN Algorithm
	Built DBSCAN Object
	Find Neighbour Function
	Fit Function
	Visualization Function
	DBSCAN Implementation

	5.1.7.Input Image Cluster
	5.1.8.k-NN Algorithm
	Euclidian Distance Function
	Get Neighbours Function
	K-NN Implementation

	5.1.9.Get Object’s Density
	5.1.10.Volume Calculation
	Black Background Transformation
	Area Calculation
	Height Calculation
	Objects Volume

	5.1.11.Object’s Mass Estimation

	5.2.Results
	5.2.1.DBSCAN Algorithm
	5.2.2.Object Identification
	10 Kinds in Training Data (4.802 images)
	20 Kinds in Training Data (10.207 images)

	5.2.3.Object’s Area
	Apple
	Lemon
	Orange
	Average Accuracy Result



	CHAPTER 6CONCLUSION
	REFERENCES
	APPENDIX

	36da61b9c65d85611ac539776103b7811aeb7bc1fa80a42a736e0bb55b54ab36.pdf

