
11 

 

CHAPTER 5 

IMPLEMENTATION AND RESULTS 

 

5.1. Implementation 

This research uses the Python programming language, in this chapter we will discuss how 

the program works. The first step in this program is to retrieve the data first. The data retrieval 

process must have an API Key. What you will get is the consumer key, consumer secret, access 

token, and access secret.  

 

1. consumer_key = 'Gq6DQpjxV4tMo3BH2zZmmD51T' 
2. consumer_secret = 'Bg7XsPSmnlWyKeZLtZrsjW34WdULkGcUWHxwACIwa1J4exDlsK' 
3. access_token = '1456889597883912228-CePiSfi4SZWXVGPOkDRLa9n8WDxKJc' 
4. access_secret = 'yTNTjituna3Xa2pEAaatbhgmgt8GRbcW5nh8GiyM68WP5' 

 

if you have got the API key, next is the process of retrieving data. 

 

5. for tweet in tweepy.Cursor(api.search,q="vaksin, covid", lang="id", sinc
e="2021-11-01").items(10000): 

6. print (tweet.created_at,tweet.author.screen_name,tweet.text) 
7. csvWriter.writerow([tweet.created_at, tweet.author.screen_name, tweet.te

xt]) 

 

In rows 5 and 6 is the data collection process, the data taken is data that queries the covid 

vaccine, in Indonesian, the data is taken starting November 1, 2021, and takes about 10000 data. 

The data taken from twitter is only the date, name, and tweet only. If it will be saved as a 

datacrawling.csv file.  

Before calculating using the algorithm, the data must be processed by going through case 

folding, tokenization and filtering stopwords. The following is a case folding process that 

functions to convert all letters to lowercase. In addition to characters a to z will be omitted and 

will remove numbers and punctuation that have nothing to do with analysis. 

 

1. df['TWEET'] = df['tweet'].str.lower() 
2. df.head() 
3.  
4. def remove_punct(text): 



12 

 

5. #text = "".join([char for char in text if char not in 

string.punctuation]) 

6.     text = re.sub(r'[^a-zA-Z0-9]', ' ', str(text)) 
7.     text = re.sub(r'\b\w{1,2}\b', '', text) #menghilangkan 2 kata 
8.     text = re.sub(r'\s\s+', ' ', text) 
9.     text = re.sub(r"\d+", "", text) 
10.    return text 
11. df['tweet_clean'] = df['TWEET'].apply(lambda x: remove_punct(x)) 
12. df.head() 

 

After the case folding process is complete, the next step is the tokenization process. 

Tokenization is the process of separating text into chunks of words so that they can then be 

analyzed. 

 

1. def tokenization(text): 

2.     text = re.split('\W+', text) 

3.     return text 

4.  

5. df['TOKENIZATION'] = df['tweet_clean'].apply(lambda x: 

tokenization(x.lower())) 

6. df.head() 

 

If the tokenization process is complete, the next is the filtering process which functions to 

retrieve important words from the tokenization results, however, if common words that have no 

meaning in the data will be deleted and classified as general words.  

 

1. Stopword = nltk.corpus.stopwords.words('indonesian') 
2. def remove_stopwords(text): 
3. text = [word for word in text if word not in stopword] 
4. return text 
5.  
6. df['STOP_REMOVAL'] = df['TOKENIZATION'].apply 
  (lambda x:remove_stopwords(x)) 

7. df.head() 
8.  
9. Stop_removal = df[['STOP_REMOVAL']] 
10.  

11. def fit_stopwords(text): 

12.    text = np.array(text) 

13.    text = ' '.join(text) 

14.    return text 

15.  

16. df['STOP_REMOVAL'] = df['STOP_REMOVAL'].apply 

(lambda x: fit_stopwords(x)) 

17. df.head() 

 



13 

 

Then this is the last process for the calculation of the algorithm. First, files that have gone 

through a pre-processing process will be subjected to a labelling process whose function is to 

separate negative and positive sentiments.  

 

1. df['label'] = '' 

2. for i,x in df. tweet_akhir.iteritems(): 

3. label = TextBlob(x) 

4. df['label'][i] = label.sentiment.polarity 

5. print("Index: ",i, "label", label.sentiment.polarity) 

6.  

7. def polarity_to_label(x): 

8.     if(x >= -1 and x < 0): 

9.       return 'negatif' 

10.     if(x == 0): 

11.       return 'neutral' 

12.     if(x > 0 and x <=1): 

13.       return 'positif' 

14. df.label = df.label.apply(polarity_to_label) 

 

In line 2 df. tweet_akhir is the column that will be labelled sentiment. If it is less than 0 

then the sentence is included in the negative sentiment label. Meanwhile, if it is more than 0 then 

the sentence is included in the positive sentiment label. When finished, the results of the 

labelling process will be saved into a csv file with the name resultlabelling.csv. 

After the labelling process is complete, the next step is to split the data. This is the 

process of dividing the data into 2 namely test data and train data.  

 

1. Train_X, test_X, train_X, test_Y=model_selection.train_test_split 
(df[' tweet_akhir '], df['label'], test_size = 0.1, random_state = 0) 

2.  
3. df_train = pd.DataFrame() 
4. df_train[' tweet_akhir '] = train_X 
5. df_train['label'] = train_Y 
6. df_test = pd.DataFrame() 
7. df_test[' tweet_akhir '] = test_X 
8. df_test['label'] = test_Y 

 



14 

 

In the data split process in line 1 is the process to separate the data that has been labelled 

into test and training data. In the random_state section, 0 is made so that there is no 

randomization in the split data, which means the sequence is still the same as before it was split. 

Lines 4 and 5 are splitting data into train data and lines 7 and 8 are splitting test data. The data 

taken is data from the tweet_akhir and label columns. When finished, the file will be saved in a 

csv file with the names df_train.csv and df_test.csv. 

If the data split process is complete, the next step is the TF-IDF process to analyze the 

relationship between a sentence and a set of documents. After that, the last SVM algorithm 

testing process will be carried out and later accuracy results and others will appear. 

 

1. predictions_SVM = model.predict(test_X_tfidf) 
2. test_prediction = pd.DataFrame() 
3. test_prediction[' tweet_akhir '] = test_X 
4. test_prediction['label'] = predictions_SVM 
5. SVM_accuracy = accuracy_score(predictions_SVM, test_Y)*100 
6. SVM_accuracy = round(SVM_accuracy,1) 
7.  
8. test_prediction 
9.  
10. SVM_accuracy 

11.  

12. From sklearn.metrics import classification_report 

  



15 

 

5.2. Results 

In this study, it showed that 92.4% of Twitter application users gave a neutral response to 

the topic of the Covid vaccine. But there are 0.8% of the people who gave a negative response to 

the covid vaccine. Meanwhile, 6.7% of people in Indonesia gave a positive response to the topic 

of the Covid vaccine in Indonesia. 

In this study, before classifying the data, the thing that must be done is to retrieve data 

using the crawling method by having a twitter account to get the twitter API which will be used 

to retrieve data from twitter using the crawling method. Here are some data results that have 

been successfully retrieved from Twitter. 

Figure 5.1 some data results taken from twitter 

The picture above is some of the data results that were successfully retrieved through the 

crawling method by having an API key that contains consumer_key, consumer_secret, 

access_token, and access_secret. The data taken are datetime, name, and tweet. The data that was 

successfully retrieved were 9981 data. 



16 

 

After the data has been successfully retrieved by the crawling method, then the data will 

go through a pre-processing process. In this process, case folding will be carried out which 

serves to convert all letters into lowercase letters, only letters a to z are accepted. Other than that 

character will be omitted and considered delimiter. At this stage only use the modules available 

in python and do not use any external libraries. In addition to changing the letters to lowercase. 

The result of this process is in the TWEET column. The following is the result of case folding 

which converts letters into lower case. 

Figure 5.2 case folding converts all letters to lowercase  

Furthermore, in the case folding process, it is also done to remove numeric characters and 

punctuation marks that have nothing to do with what will be analyzed. In this process python 

uses the re module to remove this character. The result of this process is in the tweet_clean 

column. The following is the result of case folding that removes numbers and punctuation marks. 



17 

 

Figure 5.3 case folding results remove numbers and punctuation marks 

After the case folding process is complete, then in the tweet_clean column the 

tokenization process will be carried out. This process serves to separate the text into pieces called 

tokens so that they can then be analyzed. The result of this process is in the TOKENIZATION 

column. The following is the result of tokenization. 

Figure 5.4 Result of tokenization process 

After the tokenization process is complete, then in the TOKENIZATION column, a 

stopwords filtering process will be carried out. In this process, it functions to retrieve important 

words from the tokenization results by using a stoplist algorithm that functions to remove less 

important words and a wordlist to store important words. Words that often appear but have no 

meaning will be deleted and classified as general words. The result of this process is in the 

STOP_REMOVAL column. The following is the result of filtering stopwords. 



18 

 

Figure 5.5 stopwords filtering process  

Furthermore, after the case folding process has been completed, a labeling process is 

carried out in the tweet_final column which functions to label sentiments which include negative 

comments, positive comments, and neutral comments. In this process there are 9981 data 

labeled. The results of the labeling process are in the label column. The following is the result of 

the labeling process. 

Figure 5.6 the result of the labeling process  



19 

 

Furthermore, after the labeling process, the data will be split. This data will be divided 

into test data and train data. The test data will be used to determine the performance of the 

previously trained algorithm and when finding new data that has never been seen before.  

Figure 5.7 data test result 

While the train data is used to train the algorithm used. After splitting the data, the test 

data has 999 data while the train data has 8982 data. The following are the results of the test data 

and train data that have been separated. 

 

 

 

 

 



20 

 

Figure 5.8 data training result 

After splitting the data, then a test is carried out using tf-idf which serves to reduce the 

weight of a term if its occurrence is spread throughout the document. Here are some of the 

results. 

Table 5.1. Result from tf-idf 

{'kelurahan': 1746, 'polsek': 3305, 'pengamanan': 3003, 'pemantauan': 2919, 

'vaksin': 4321, 'covid': 695, 'door': 982, 'https': 1360, 'gagal': 1166, 

'urusan': 4299, 'wab': 4501, 'mobil': 2515, 'keliling': 1736, 'ridwan': 

3555, 'orang': 2730, 'koko': 1889, 'blogdokter': 521, 'tonangardyanto': 

4197, 'sridiana': 3895, 'va': 4314, 'drpriono': 1005, 'meny': 2433, 'mas': 

2150, 'prasetiyo': 3364, 'sok': 3868, 'superior': 3956, 'percaya': 3070, 

'silakan': 3823, 'melindungi': 2214, 'upp': 4296, 'kab': 1602, 'bantaeng': 

286, 'melaksanakan': 2197, 'giat': 1214, 'amp': 111, 'pendampingan': 2981, 

'kantor': 1653, 'desa': 788, 'pattaneteang': 2830, 'kec': 1705, 'tompob': 

4194, 'narasinewsroom': 2597, 'sebelas': 3680, 'jenis': 1552, 'izin': 1492, 

'penggunaan': 3020, 'darurat': 743, 'badan': 239, 'pengawas': 3010, 'obat': 

2706, 'makanan': 2105, 'bpom': 548, 'lurah': 2079, 'bonto': 537, 'sunggu': 

3947, 'bissa': 508, 'must': 2572, 'watch': 4549, 'dokter': 972, 'sejati': 

3697, 'mengerti': 2352, 'sales': 3618, 'indonesia': 1420, 'malu': 2120, 

'dir': 913, 'sobat': 3864, 'bumn': 580, 'bentuk': 350, 'kepedulian': 1793, 

'percepatan': 3073, 'penanganan': 2970, 'pusri': 3456, 'penyerahan': 3053, 

'ban': 267, 'data': 748, 'pasien': 2806, 'sentra': 3745, 'universitas': 

4286, 'bsi': 560, 'kampus': 1639, 'bogor': 528, 'cilebut': 651, 'hai': 

1265, 'catat': 613, 'informasi': 1436, 'peningkatan': 3034, 'kematian': 

1760, 'akibat': 63, 'gangguan': 1176, 'jantung': 1519, 'berusia': 463, 

'melonjak': 2217, 'hingg': 1335, 'survei': 3962, 'serologi': 3774, 

'berbahaya': 363, 'endemik': 1066, 'flu': 1133, 'pandemi': 2777, 'selesai': 



21 

 

3727, 'varian': 4340, 'covovax': 702, 'bohong': 529, 'rakyat': 3487, 

'menghentikan': 2366, 'pdip': 2862, 'bonekanya': 536, 'negara': 2616, 

'sukangetweet': 3927, 'puanmaharani': 3433 

Furthermore, in the process of classifying this data, the process of testing the SVM 

algorithm is carried out. and the final result of the test is the SVM algorithm has an accuracy of 

98.6. 

 

 

 

 

 

 

 

Figure 5.9 : classification report and confusion matrix 

Below is the confusion matrix table. 

Table 5.2. Confusion matrix 

Actual Prediction 

negative neutral Positive 

Negative 4 4 0 

Neutral 1 908 0 

Positive 0 9 73 

 

From the confusion matrix table above, the data is tested to get the recall, precision, and 

accuracy values. Here is how to get the accuracy value. 

TP = 4 + 908 + 73 = 985 

Total data = 999 

TP

total data
 = 

985

999
 = 0,98 

  



22 

 

Next is calculating precision. 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

If all are calculated, the result of all precision is 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐴+𝐵+𝐶

𝑗𝑢𝑚𝑙𝑎ℎ 𝑘𝑒𝑙𝑎𝑠
 = 

0,5+0,99+0,89

3
 = 1,78 

 

Next is to calculate recall. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

If all are counted, the result of all recall is 

𝑅𝑒𝑐𝑎𝑙𝑙 𝐴+𝐵+𝐶

𝑗𝑢𝑚𝑙𝑎ℎ 𝑘𝑒𝑙𝑎𝑠
 = 

0,8 +0,98+1

3
 = 2,11 

So the results from the confusion matrix table above get an accuracy value of 0.98 while 

the results from all precision are 1.78, while the results from all recall are 2.11. 

  


