
23

IMPLEMENTATION AND RESULTS

5.1. Implementation

This project use Python programming languange. This project will use an image

filter(grayscale,erosion,dilation) which will then be passed to tesseract to detect and convert the

image into text , will this filter make the image easier to detect or even make it harder to detect.

The size of the sample image used was 750x500 pixel. To take an image from the directory and

to create a txt file using the opencv library and for the text conversion process using the tesseract

library.

1. for i in range(h):

2. for j in range(w):

3. p = float(img[i][j][0])*0.2989 + float(img[i][j][1])*0.5870 +

float(img[i][j][2])*0.1140

4. newImage[i][j] = p

first we will make the image grayscale by taking the RGB value in each array and

multiplying it by a certain number and we will replace the result in the array with a new value

(in line 3 and 4).

5. def calculate_template_space(template_side_length):

6. return int(template_side_length/2)

7.

8. def dilation(img, template_side_length):

9. template_space = calculate_template_space(template_side_length)

10.

11. for x in range(template_space, new_image.shape[1] - template_space):

12. for y in range(template_space, new_image.shape[0] - template_space):

13. for c in range(0, template_side_length):

14. for d in range(0, template_side_length):

15. if sub > maximum:

16. if sub > 0:

17. maximum = sub

In line 5 and 6 useful for making brushes or which will be used as templates which will

be carried out per template erosion and dilation itself. Line 8 and 9 to to declare a dilation

24

function which has image parameters and brush template, in line 11 and 12 to do repetition

where the brush template starts running to the end of the image, while lines 13 and 14 repetition

in the brush template. In line 15 until 16 to find the largest value in the brush template.

18. if sub < minimum:

19. if sub > 0:

20. minimum = sub

21. def optimize(image):

22. new_image = erosion(image, 3)

23. new_image = dilation(new_image, 3)

24. return new_image

and the location of the erosion difference is on lines 17 to 18 which are used to find the

smallest value. rows 23 and 24 serve to apply an erosion filter which is then dilated.

25

5.2. Testing

I have tested my program with a total of 100 datasets and different types of datasets, the

first is an image that I took from Google, a handwritten photo, a photo that does not have text

elements and a photo that has a text element. because it detects the text I use the opening process

as well because if you use closing the object will actually overlap so it will be difficult to convert

later. I tested this dataset 5 times, based on the type of dataset and finally a mix of 100 datasets.

Of all the data that has been processed I do an analysis to measure how accurate and the

comparison is from only tesseract and contains pre-processing, with confusion matrix I

calculate Accuracy, Precision, Recall . where is Accuracy itself is the ratio of True (positive

and negative) predictions to the overall data. and precision is the ratio of positive correct

predictions compared to the overall positive predicted results. while recall is the ratio of true

positive predictions compared to the overall data that are true positive. because I use the image

text dataset, text image photo data,handwritten image data, the data is not image text so there

are 4 possibilities that happen

 True Positive (TP) successfully detected and correct

 True Negative (TN) does not detect text in images that have no text

 False Positive (FP) successfully detected and false

 False Negative (FN) was not detected despite text

Of the 100 data I tested 5 times, the first was based on images, the second was handwritten, the

third was an image that didn't have an image, the fourth was a photo that had text elements and

the last one was a combination of all datasets.

data image text
 pre
processing ocr

True Positive (TP) 26 20

True Negative (TN) 0 0

False Positve (FP) 10 18

False Negatif (FN) 4 2

Illustration 5.1 : table result of dataset image text

26

handwriten text
 pre
processing ocr

True Positive (TP) 4 2

True Negative (TN) 0 0

False Positve (FP) 2 4

False Negatif (FN) 4 4

not image text
pre
processing

ocr

True Positive (TP) 0 0

True Negative (TN) 10 10

False Positve (FP) 0 0

False Negatif (FN) 0 0

photo image
pre
processing

ocr

True Positive (TP) 19 11

True Negative (TN)

False Positve (FP) 12 13

False Negatif (FN) 9 16

mix
pre
processing

ocr

True Positive (TP) 49 33

True Negative (TN) 10 10

False Positve (FP) 24 35

False Negatif (FN) 17 22

to calculate Accuracy, Precision, Recall using the following formula:

Accuracy = (TP + TN) / (TP+FP+FN+TN)

Precision = (TP) / (TP+FP)

Recall = (TP) / (TP + FN)

here I'm just trying to calculate Accuracy, Precision, Recall data mix using pre processing

Accuracy = (TP + TN) / (TP+FP+FN+TN)

 = (49 +10) / (49+10+24+17)

 =59/100 = 0,59 = 59%

Illustration 5.2 : table result of dataset handwriten text

Illustration 5.3 : table result of dataset notimage text

Illustration 5.4 : table result of dataset photo image

Illustration 5.5 : table result of dataset mix image

27

Precision = (TP) / (TP+FP)

 =49/(49+24)

 =49/73=0,67 = 67%

Recall = (TP) / (TP + FN)

 =49/(49+17)

 =49/66=0,74 = 74%

by using the formula as above I get data like this

 Pre processing precision recall Accuracy

40 data image text 72% 86% 65%

40 data photo image text 61% 67% 47%

10 data handwriten image 66% 50% 40%

10 data not image text 0 0 100%

mix 67% 74% 59%

 Tesseract precision recall Accuracy

40 data image text 52% 90% 50%

40 data photo image text 45% 40% 27%

10 data handwriten image 33% 33% 20%

10 data not image text 0 0 100%

mix 48% 60% 43%

 From the table above, 3 questions can be raised:

 First, how many percent of the images were successfully predicted which had images and did

not have images correctly? 59% vs 43%

The second question is what percentage of images that were successfully converted from all

detected images? 67% vs 48%

the third question is what percentage of the image that was successfully converted from the

total image that should have been detected? 74% vs 60%

From the question it can be concluded that those who use Tesseract only have less than

optimal results, while those who go through the pre-processing process are more optimal.

Illustration 5.6 : measures of pre processing

Illustration 5.7 : measures of tesseract

28

I have tested the dataset with different preprocessing and this is the result

Dataset erosion dilation closing

True Positive (TP) 33 24 36

True Negative (TN) 10 10 10

False Positve (FP) 35 40 32

False Negatif (FN) 20 26 22

And of all the preprocessing that I use, why don't I use erosion, dilation, or closure and

instead use opening because from the results I tested using several different preprocessing

values, the precision recall and the highest accuracy were in opening, so I used opening. Here

I show the comparison results of opening, closing, erosion and dilation.

 Pre processing precision recall Accuracy

Erosion 48% 62% 43%

Dilation 40% 48% 34%

Closing 52% 62% 46%

Opening 67% 74% 59%

