
11

ANALYSIS AND DESIGN

4.1. Analysis

Process of converting images into text using the tesseract ocr library. But before

processing the image, pre processing is carried out in order to improve image quality and

increase the percentage of successful text conversion.The sample image to be processed must

have good image quality so that the level of accuracy is higher. therefore we added a filter to

solve this problem.The filters I use are grayscale, erosion and dilation depending on the image

of the text, whether the text looks thick or looks too thin. so that the text is easier to detect which

was thin and difficult to read, tesseract becomes easier to read This is also to prove my project

whether the filter on the image affects the tesseract ocr making it easier or more difficult for

tesseract to read the text.

12

4.2. Design

First we need to import the image that we will process then we show the image so we

can see the image that we will process and we need to get the height and width of the image.

Illustration 4.1 : Flowchart

13

To facilitate the work, Work in the process further in image processing, in the first stage

Grayscaling process is carried out. This process changes the image with various colors into an

8-bit image gray. The equations used are

Gray = 0,2989*R + 0,5870*G + 0,1140*B

Information :

R : The intensity value of the red color component

G : Green component intensity value intensitas

B : The intensity value of the blue component

This process is done by doing each pixel a color that has three color components (RGB).With

the above equation, we get a color new which has a color component with intensity between 0

to 225 (this is because image is 8 bits so there are 28 colors or 225). and for the grayscale

Illustration 4.2 : original image

14

process, it will start with repetitions as much as height and width and then we take the RGB

color in the loop index. and in each pixel there is an index to 0 which is red index 1 is green

and index 2 is blue. then to convert to grayscale we multiply by the formula above.the first step

we have to get the RGB value per pixel I take the example of 10x10 pixels between 260.60 to

269.69 from the picture above, more precisely in the quotation marks area, to get the RGB value

of each pixel I use the library pillow.

After we get the pixel value, we enter it into the formula above the first example at pixel

260.60 the RGB value is 152,106,106 if it is entered into the formula then:

Gray = 0,2989*152 + 0,5870*106 + 0,1140*106

45,43+62,22+12,08=119,73

If you already get the grayscale value of the pixel which originally had 3 values, now it only

has 1 value, so the new 260.60 pixel is 119.73 and repeated as many times as width x height.

and the result will look like this :

152,106,106 147,103,102 199,155,154 97,56,54 217,173,170 242,198,195 241,197,194 242,197,194 247,199,197 255,209,207 60

143,99,98 137,96,94 201,160,158 84,43,41 214,173,169 241,200,196 244,200,197 248,204,201 247,202,199 246,198,196 61

145,101,100 140,99,97 195,154,152 88,48,46 212,173,168 240,201,196 243,202,198 243,199,196 244,199,194 236,191,186 62

151,107,106 145,104,100 186,145,143 96,55,51 91,48,42 117,74,68 201,156,151 248,203,198 248,200,196 252,203,199 63

144,100,97 140,97,91 200,256,253 91,48,42 213,170,164 248,205,199 248,203,198 244,196,192 247,198,194 246,195,192 64

167,122,117 157,114,108 198,155,149 117,74,68 221,176,171 247,202,197 246,198,194 247,198,194 252,201,198 249,195,193 65

220,175,170 216,171,166 238,193,188 201,156,151 235,190,185 248,203,198 245,197,193 250,201,197 254,203,200 247,193,191 66

251,203,199 245,200,195 254,206,202 248,203,198 245,197,193 250,202,198 245,196,192 250,199,196 254,200,198 247,193,191 67

249,200,196 242,194,190 242,193,189 248,200,196 245,196,192 248,199,195 244,195,191 246,195,192 251,197,195 251,197,195 68

249,198,195 246,197,193 247,198,194 252,203,199 246,197,193 248,199,195 248,197,194 246,195,192 249,195,193 252,198,196 69

260 261 262 263 264 265 266 267 268 269

Illustration 4.3 : value from 260x60 to 269x69 . pixels

119,73 116,01 144,09 67,96 185,79 210,78 209,77 210,07 213,08 222,48 60

112,02 108 172 55,01 184,77 211,77 212,78 216,66 215,07 212,08 61

114,02 110,99 165,99 59,71 184,06 212,05 213,17 211,78 211,85 214,22 62

90,01 106,81 157 66,78 59,96 86,15 168,85 215,85 213,86 217,16 63

112.79 109.15 238.89 60.16 182.15 217.14 215.86 209.87 212.17 209.88 64

134.86 126.15 167.15 86.16 188.86 214.86 211.87 212.17 215.88 210.89 65

187.86 183.86 205.86 168.86 202.86 215.86 210.87 215.17 217.88 208.89 66

216.87 212.86 219.87 215.86 210.87 215.87 210.17 213.88 215.89 208.89 67

214.17 207.87 207.17 213.87 210.17 212.71 209.17 209.88 212.89 212.89 68

212.88 211.17 212.17 217.16 211.17 213.17 211.88 209.88 210.89 213.89 69

260 261 262 263 264 265 266 267 268 269

Illustration 4.4 : value of the grayscaled image

15

After the above process is done, all pixels of the image will turn into a grayscale image,

the image will be shown and saved in the directory and the image that will be displayed will be

like this

So that the smaller the value of the grayscale it will show the color towards the darker

and vice versa the greater the value indicates the direction of the light color

After getting grayscale, the next step is dilation and erosion, the use of this function

depends on the image text. Dilation itself is the process of adding pixels to the boundaries of

objects in the image, while erosion removes pixels at the boundaries of objects. The number of

pixels added or removed from objects in an image depends on the size and shape of the styling

elements used to process the image, if the text in the image is too thin we use erosion and if it

is too thick we use dilation it looks reversed because we are using a grayscale image so the

erosion is should scrape instead looks like thicken and otherwise. the first thing we have to do

is we have to define a template space, this template space itself is like a brush, it is recommended

to use odd values to have a midpoint, so that from around the midpoint we calculate. after we

Illustration 4.5 : grayscale image

16

determine the brush, we divide the brush value by 2 and round it down which is useful to find

out where the starting position is.

 For example, we have an10x10px image and we set the brush to be 3, so 3 divided by

2 is 1.5 and rounded to 1 so we will start counting after the first pixel. so we start with the

yellow square as the midpoint

and also we start from the width first so that the process goes to the right, not to the bottom. For

the repetition itself, the template width will be reduced from the template space itself so it

doesn't stop at the wide end but stops at the red square because the template space is 1. and

continue again from the yellow bottom box to the red bottom box again until it's finished

The first iteration is to define the path of the brush. and in that loop we repeat as many

times as the brush, and above we set the brush to be 3.

Illustration 4.6 : example location of yellow square

midpoint

Illustration 4.7 : example locationof red square

17

so it will look like this, if the midpoint is yellow then there will be 3x3 repetitions and yellow

is used as the midpoint of the repetition. so if it is applied to the calculation above it will be like

this:

its midpoint is yellow. what we do here is erosion so we will find the smallest value of

the green box, smaller than 256 and greater than 0. so if we calculate it will be like this the first

is 119.73 greater than 0 and less than 256 then the minimum value now is 119.73, next is 116.01

greater than 0 and less than 119.73 then the minimum value now is 116, 01. then 144.09 is

greater than 0 but not less than the current minimum value, then the minimum value is still

116.01. and 112.02 is greater than 0 and is also smaller than the minimum value, so the current

minimum value is 112.02. 108 is less than the current minimum and greater than 0 then 108 is

the minimum value. then 172, 114.02, 110.99 and 165.99 none is smaller than the minimum

value. then at midpoint still use the current minimum value of 108. If we have got the minimum

value in 1 brush template, we move the midpoint so that it will look like the image below, the

119,73 116,01 144,09 67,96 185,79 210,78 209,776 210,07 213,08 222,48

112,02 108 172 55,01 184,77 211,77 212,78 216,66 215,07 212,08

114,02 110,99 165,99 59,71 184,06 212,05 213,17 211,78 211,85 214,22

90,01 106,81 157 66,78 59,96 86,15 168,85 215,85 213,86 217,16

112.79 109.15 238.89 60.16 182.15 217.14 215.86 209.87 212.17 209.88

134.86 126.15 167.15 86.16 188.86 214.86 211.87 212.17 215.88 210.89

187.86 183.86 205.86 168.86 202.86 215.86 210.87 215.17 217.88 208.89

216.87 212.86 219.87 215.86 210.87 215.87 210.17 213.88 215.89 208.89

214.17 207.87 207.17 213.87 210.17 212.71 209.17 209.88 212.89 212.89

212.88 211.17 212.17 217.16 211.17 213.17 211.88 209.88 210.89 213.89

Illustration 4.8 : example location of green box

Illustration 4.9 : image pixel value 108is midpoint

18

midpoint now has a value of 172 and look for the minimum value again in the of the previous

brush template which is 3.

We start from the first 116.01 is greater than 0 and less than 256 then the minimum

value now is 116.01 , 114.09 is not less than 116.01 then the minimum value is not replaced.

further 67.96 is smaller than 114.09 then the minimum value now is 67.96 then 106, and 172 is

not less than 67.96 then the minimum value is now 67.96 then 55.01 is smaller than the current

minimum value and greater than 0 then the current minimum value is 55.01 and then 110.99 ,

119,73 116,01 144,09 67,96 185,79 210,78 209,776 210,07 213,08 222,48

112,02 108 172 55,01 184,77 211,77 212,78 216,66 215,07 212,08

114,02 110,99 165,99 59,71 184,06 212,05 213,17 211,78 211,85 214,22

90,01 106,81 157 66,78 59,96 86,15 168,85 215,85 213,86 217,16

112.79 109.15 238.89 60.16 182.15 217.14 215.86 209.87 212.17 209.88

134.86 126.15 167.15 86.16 188.86 214.86 211.87 212.17 215.88 210.89

187.86 183.86 205.86 168.86 202.86 215.86 210.87 215.17 217.88 208.89

216.87 212.86 219.87 215.86 210.87 215.87 210.17 213.88 215.89 208.89

214.17 207.87 207.17 213.87 210.17 212.71 209.17 209.88 212.89 212.89

212.88 211.17 212.17 217.16 211.17 213.17 211.88 209.88 210.89 213.89

Illustration 4.10 : image pixel value 172 as midpoint

19

165.99 , 59.71 then the minimum value remains 55.01 and the midpoint is replaced with the

minimum value i.e. 55.01then it will look like this :

and so on until finished. when it's done it will look like this:

119,73 116,01 144,09 67,96 185,79 210,78 209,776 210,07 213,08 222,48

112,02 108 55,01 55,01 184,77 211,77 212,78 216,66 215,07 212,08

114,02 110,99 165,99 59,71 184,06 212,05 213,17 211,78 211,85 214,22

90,01 106,81 157 66,78 59,96 86,15 168,85 215,85 213,86 217,16

112.79 109.15 238.89 60.16 182.15 217.14 215.86 209.87 212.17 209.88

134.86 126.15 167.15 86.16 188.86 214.86 211.87 212.17 215.88 210.89

187.86 183.86 205.86 168.86 202.86 215.86 210.87 215.17 217.88 208.89

216.87 212.86 219.87 215.86 210.87 215.87 210.17 213.88 215.89 208.89

214.17 207.87 207.17 213.87 210.17 212.71 209.17 209.88 212.89 212.89

212.88 211.17 212.17 217.16 211.17 213.17 211.88 209.88 210.89 213.89

Illustration 4.11 : image pixel minimum value

Illustration 4.12 : filtered image

20

The next filter is dilation. dilation itself is the opposite of erosion where if erosion is

looking for a minimum value, dilation is looking for a maximum value, then it will look like

this:

in dilation we look for the largest value that must be greater than the value of 0 the first

is 119.73 greater than the value 0 then the maximum value now is 119.73 then 116.01 is not

greater than the maximum value then the maximum value is fixed, no changed. next is 144.09,

144.09 is greater than the current maximum value, then the current maximum value is shifted

by 144.09 . then 112.02 and 108 are not greater than the maximum value, then the maximum

value remains. the next value is 172 , and 172 is greater than the current maximum value, which

is 144.09, then the current maximum value is 172. the next value is 114.02 , 110.99 , 165.99

and none of that is greater than the value maximum then the current maximum value is 172.

119,73 116,01 144,09 67,96 185,79 210,78 209,776 210,07 213,08 222,48

112,02 108 172 55,01 184,77 211,77 212,78 216,66 215,07 212,08

114,02 110,99 165,99 59,71 184,06 212,05 213,17 211,78 211,85 214,22

90,01 106,81 157 66,78 59,96 86,15 168,85 215,85 213,86 217,16

112.79 109.15 238.89 60.16 182.15 217.14 215.86 209.87 212.17 209.88

134.86 126.15 167.15 86.16 188.86 214.86 211.87 212.17 215.88 210.89

187.86 183.86 205.86 168.86 202.86 215.86 210.87 215.17 217.88 208.89

216.87 212.86 219.87 215.86 210.87 215.87 210.17 213.88 215.89 208.89

214.17 207.87 207.17 213.87 210.17 212.71 209.17 209.88 212.89 212.89

212.88 211.17 212.17 217.16 211.17 213.17 211.88 209.88 210.89 213.89

Illustration 4.13 : image pixel value 108 as midpoint

21

and then the value in the midpoint which was previously 108 is replaced with the maximum

value where the maximum value is 172. and it will look like this:

and the same thing will be done until everything in the brush template gets the maximum

value and the midpoint is replaced with that maximum value.

119,73 116,01 144,09 67,96 185,79 210,78 209,776 210,07 213,08 222,48

112,02 172 172 55,01 184,77 211,77 212,78 216,66 215,07 212,08

114,02 110,99 165,99 59,71 184,06 212,05 213,17 211,78 211,85 214,22

90,01 106,81 157 66,78 59,96 86,15 168,85 215,85 213,86 217,16

112.79 109.15 238.89 60.16 182.15 217.14 215.86 209.87 212.17 209.88

134.86 126.15 167.15 86.16 188.86 214.86 211.87 212.17 215.88 210.89

187.86 183.86 205.86 168.86 202.86 215.86 210.87 215.17 217.88 208.89

216.87 212.86 219.87 215.86 210.87 215.87 210.17 213.88 215.89 208.89

214.17 207.87 207.17 213.87 210.17 212.71 209.17 209.88 212.89 212.89

212.88 211.17 212.17 217.16 211.17 213.17 211.88 209.88 210.89 213.89

Illustration 4.14 : image pixel maximum value

22

but based on the opinion that I received, it is better not to bother determining this image

is given an erosion or dilation filter, so I decided to use the opening process. Opening is an

erosion process followed by dilation. Opening is usually used to remove small objects to make

the edges of the image smoother. Different from closing which runs by dilating the image first,

after that the image that has been dilated will be eroded. I don't use dilation because my dataset

is text so that if it is dilated, it will actually make the text overlap and make it more difficult to

convert/detect. therefore I use the opening process, so the final process of my image will be

grayscaled and then I will erosion after that the image that has been eroded I am dilated after

that I just give it to tesseract for detection and conversion.

