3. HASIL

3.1. Perumusan Topik dan Penetapan Tujuan Review

3.1.1. Perumusan Topik

Proses perumusan topik dilakukan melalui berbagai macam tahapan seperti pengumpulan literatur awal, penyaringan literatur awal, analisis kesenjangan, penyusunan desain konseptual, dan hasil perumusan topik.

3.1.1.1. Pengumpulan Literatur Awal

Pengumpulan literatur awal diperlukan sebagai sumber informasi awal yang dapat dijadikan sebagai rumusan topik mengenai kehilangan dan limbah anggur. Berdasarkan berbagai macam situs web dan kata kunci ditemukan berbagai jenis literatur yang telah dapat dijadikan sebagai sumber penelitian ini.

Situs Web	aftar Situs Web dan Kata Kunci Pengum Kata Kunci	Jumlah	
Situs Web	Kata Kulici	Juillan	Tanggal
	Food loss	873. <mark>602</mark>	28 Feb
	Food waste	295.8 <mark>32</mark>	2021
	Grape	77.31 <mark>7</mark>	
	Bioactive compounds in grape	47.404	1 Maret
	pomace	47.424	<mark>2</mark> 021
Science	Grape waste production	11.722	57
Direct	Wine production	68.634	//
	Grape pomace	4.485	2 Maret
	Grape skin	<mark>21</mark> .762	2021
	Grape seed	28.396	-
	Grape by-product valorization	1.071	3 Maret
	Valorization of grape pomace	732	2021
	Limbah anggur	3.619	
Google	Kehilangan limbah anggur	8.500	1 Maret
Scholar	Pemanfaatan kulit anggur	4.670	2021
	Pemanfaatan biji anggur	4.200	-
Researchgate	Characteristic of grape pomace	11.600	3 Maret

Situs Web	Kata Kunci	Jumlah	Tanggal
	Grape	10.400	2021
	Grape skin	100++	_
	Grape seed	100++	_
	Valorization of grape pomace	100++	_

Tabel 2., menunjukkan hasil dari pengumpulan literatur awal telah dilakukan pada bulan Maret awal dengan menggunakan beberapa jenis situs web seperti sciencedirect, google scholar dan researchgate. Kata kunci yang digunakan terdiri dari: 'food loss', 'food waste', 'grape', 'bioactive compound in grape pomace', 'grape pomace', grape skin', 'grape seed', grape waste production', 'wine production', 'valorization of grape pomace', 'characteristic of grape pomace', 'grape by-product valorization', dan 'valorization of grape pomace'. Sebanyak 34 literatur telah dikumpulkan dari berbagai situs web tersebut. Literatur yang telah dikumpulkan paling banyak berasal dari situs website sciencedirect diikuti google scholar dan researchgate. Sub topik yang paling banyak dibahas adalah grape pomace sedangkan paling sedikit adalah grape by-production.

3.1.1.2. Penyaringan Literatur Awal

Penyaringan literatur pustaka awal dilakukan dengan beracuan pada kriteria inklusi dan eksklusi. Kriteria inklusi dan eksklusi dalam penyaringan pustaka ditunjukkan dalam Tabel 3., dibawah ini:

Tabel 3. Kriteria Inklusi dan Eksklusi pada Literatur Awal yang digunakan

No	Kriteria Inklusi	Kriteria Eksklusi
1	Data / informasi mengenai food loss dan	Di luar dari kriteria inklusi
	food waste di dunia dan di Indonesia	
2	Data / informasi produksi buah anggur di	
	Indonesia, di beberapa negara dan terbesar	
	di dunia	
3	Data / informasi grape waste ataupun	
	grape waste management	
4	Senyawa bioaktif yang terkandung dalam	
	limbah anggur	

No	Kriteria Inklusi				Kriteria Eksklusi
5	Pemanfaatan	limbah	anggur	dalam	
	industri pangan				

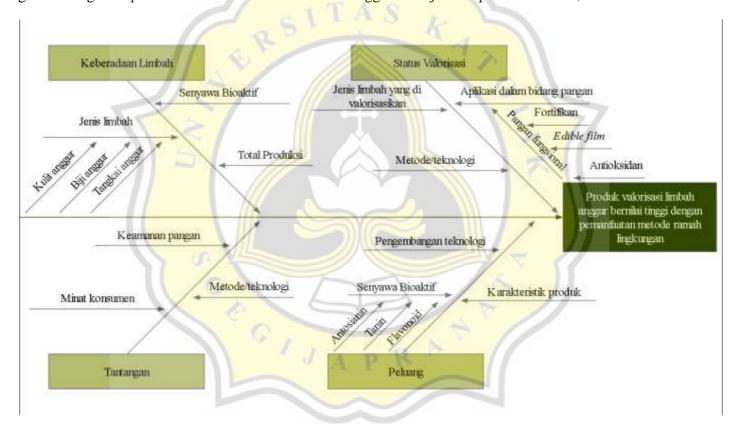
Dari sekian banyak artikel yang telah diperoleh dari proses pencarian ternyata hanya terdapat 36 artikel yang didapatkan dan didukung dengan beberapa jenis website seperti 'Badan Pusat Statistik', dan 'Food and Agriculture Organization of United Nations'. Setelah melalui proses penyaringan didapatkan sebanyak 13 buah literatur berbahasa Indonesia, dan 23 buah literatur berbahasa Inggris. Pengecekan kualitas literatur dilakukan dengan menggunakan SCIMAGO untuk literatur berbahasa Inggris, dan SINTA untuk literatur berbahasa Indonesia. Ranking dari literatur yang ditemukan dan sesuai dengan kriteria yaitu ranking Q1, Q2, S1 dan S2.

3.1.1.3. Hasil Analisis Kesenjangan

Berdasarkan literatur yang telah dikumpulkan, permasalahan berkaitan dengan kehilangan dan limbah anggur serta pemanfaatannya merupakan sebuah permasalahan yang tidak baru lagi, hal tersebut ditunjukkan oleh beberapa literatur terdahulu. Sejumlah *review* yang telah dipublikasikan terkait dengan pemanfaatan buah anggur disajikan pada Tabel 4., di bawah ini:

Tabel 4. Publikasi Review Sebelumnya

	1 abet 4. 1 ublikasi Keview Sebeluliliya				
No	Penulis dan Tahun Terbit	Identitas Jurnal	Tujuan Review	Kesimpulan	
1.	(Yu & Ahmedna, 2013) Q1, SCIMAGO	Functional Component of Grape Pomace:Their Composition, Biological Properties and Potential Applications		Limbah anggur berpotensi dijadikan sebagai sumber bahan pangan dalam roti, <i>muffin</i> , suplemen yang bermanfaat untuk mengoptimalkan kesehatan dan meminimalkan timbulnya beberapa jenis penyakit.	
2.	(Fontana et al., 2013) Q1, SCIMAGO	Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolic.	Menyelidiki dan membandingkan berbagai macam metode ekstraksi terhadap senyawa bioaktif pada grape pomace serta pemanfaatannya.	Pemulihan senyawa fenolik dari limbah anggur telah dilakukan dengan menggunakan metode ekstraksi konvensional maupun non-konvensional, tetapi implementasi komersialnya sulit untuk dilakukan hal tersebut dikarenakan terdapat beberapa parameter yang harus dipertimbangkan seperti peningkatan proses tanpa mempengaruhi fungsi senyawa itu sendiri, sesuai akan standard dan keamanan pangan.	
3.	(Kalli <i>et al.</i> , 2018) Q1, SCIMAGO	Novel Appli <mark>cation and</mark> Industrial Expl <mark>oitation of</mark> Winery By-Products		Proses pembuatan wine menghasilkan sampah organik yang berpotensi sebagai sumber daya valorisasi seperti antioksidan, food preservative, edible film, dietary fiber	
4.	(Antonic et al., 2020) Q1, SCIMAGO	Grape Pomace Valorization: A Systematic Review and Meta-Analysis	menganalisis kemungkinan penggunaan grape pomace,	penting yang diidentifikasi sebagai senyawa bioaktif	


No	Penulis dan Tahun Terbit	Identitas Jurnal	Tujuan Review	Kesimpulan
			CITAS	terfortifikasi, dan mengakibatkan adanya perubahan warna (lebih gelap, kemerahan dan kebiruan). <i>Total phenolic</i> ↑ mengakibatkan stabilitas oksidatif ↑ (pada produk daging dan ikan) dan memperpanjang umur simpan.
5.	(Ilyas et al., 2021) Q1, SCIMAGO	Sustainable Green Processing of Grape Pomace for the Production of Value- Added Products: An Overview	Membandingkan dan menganalisis beberapa metode based green processing untuk menghasilkan produk bernilai tinggi dari grape pomace	Di industri pertanian dan agroindustri, pemulihan senyawa bioaktif dari limbah anggur merupakan tantangan yang harus dihadapi. Limbah anggur bertanggung jawab atas sebagian besar masalah lingkungan karena membuang limbah di lingkungan terbuka. Untuk mengatasi masalah tersebut, terdapat beberapa teknik ekstraksi (greener technology) yang digunakan untuk memulihkan limbah tersebut sehingga dapat dijadikan sebagai produk bernilai tinggi.
6.	(Chen et al., 2020) Q1, SCIMAGO	Effective Utilization of Food Waste: Bioactivity of grape seed extraction and its application in Food Industry. Journal of Functional Foods	mengenai komposisi kimia dalam limbah anggur dan aktivitas biologisnya dalam	Kandungan bioaktif dalam limbah anggur dapat dimanfaatkan dalam dunia industri pangan dan kesehatan karena memiliki efek seperti antioksidan, anti-inflamasi, anti-kanker dan neuroprotektif. Ekstrak dari limbah anggur dapat dimanfaatkan sebagai bahan dalam pembuatan edible film, food preservative, food additive, health care functions dan food packaging.
7.	(Chowdhary et al., 2021) Q1, SCIMAGO	Current Trends and Possibilities for Exploitation of Grape Pomace as a Potential Source for Value Addition	Meringkas informasi terbaru mengenai GP sebagai produk sampingan bernilai tinggi.	Produksi wine menghasilkan limbah buah anggur yang memiliki senyawa bioaktif yang tinggi. Teknologi baik secara konvensional dan non-konvensional sering digunakan untuk pemulihan senyawa dalam limbah anggur. Teknologi non-konvensional dijadikan sebagai metode alternatif dalam mengekstrak senyawa dalam GP hal tersebut dikarenakan metode yang ramah

Penulis dan Fahun Terbit	Identitas Jurnal	Tujuan <i>Review</i>	Kesimpulan
			lingkungan dan efisien. Beberapa hal menguntungkan mendirikan industri limbah buah anggur adalah dapat dijadikan sebagai antioksidan, antibakteri, antidiabetik, kardioprotektif, dan efek neuroprotektif.

Berdasarkan Tabel 4., menunjukkan pemanfaatan limbah anggur sudah banyak dilakukan oleh beberapa peneliti sebelumnya. Produk pemanfaatan limbah anggur pada *review* sebelumnya didominasi sebagai pangan fungsional seperti *food fortification, edible film,* antioksidan dan suplemen kesehatan yang diaplikasikan pada daging, ikan, *bakery* serta manfaatnya sebagai antioksidan dan antibakteri. Teknologi yang digunakan dalam valorisasi terdiri dari teknologi konvensional dan non-konvensional. Teknologi non-konvensional dijadikan sebagai metode alternatif dalam mengekstraksi senyawa bioaktif dalam limbah anggur karena metode tersebut lebih efisien dan ramah lingkungan. *Review* ini difokuskan pada valorisasi untuk menghasilkan produk bernilai tinggi seperti *food fortification, edible film* dan antioksidan menggunakan metode / teknologi non-konvensional dan diimplementasikan dalam skala industri.

3.1.1.4. Desain Konseptual

Perumusan kata kunci atau pembuatan desain konseptual dilakukan dengan menentukan faktor-faktor yang berpengaruh terhadap topik bahasan. Diagram tulang ikan penelitian keberadaan dan limbah anggur ditunjukkan pada Gambar 8, dibawah ini:

Gambar 8. Diagram Tulang Ikan Produk Valorisasi Limbah Anggur Bernilai Tinggi dengan Pemanfaatan Metode Ramah Lingkungan

Gambar 8., menunjukkan desain konseptual dari topik penelitian limbah anggur. Dapat dilihat terdapat sub faktor / faktor dominan seperti keberadaan limbah, valorisasi, peluang dan tantangan yang mendukung atau mempengaruhi topik bahasan yaitu produk valorisasi limbah anggur bernilai tinggi dengan pemanfaatan metode ramah lingkungan. Didalam sub faktor, terdapat faktor lain yang bertindak sebagai faktor detail dalam mempengaruhi topik bahasan. Setiap faktor dominan memiliki 3 faktor cabang. Keberadaan limbah buah anggur terdiri dari senyawa bioaktif limbah, total produksi limbah dan jenis limbah seperti kulit (skin), biji (seed) dan tangkai (stem). Status valorisasi limbah buah anggur terdiri dari jenis limbah yang di valorisasikan, pengaplikasiannya menjadi pangan fungsional seperti fortifikan, edible film dan antioksidan serta metode/teknologi dari pengaplikasian. Valorisasi limbah buah anggur memiliki tantangan atau hambatan dari segi keamanan pangan, minat konsumen dan teknologi penduk<mark>ung (metode recovery) yang did</mark>asarkan pada green chemistry concept. Peluang valorisasi limbah buah anggur kedepannya terdiri pengembangan metode/teknologi, karakteristik produk recovery dan senyawa bioaktif.

3.1.1.5. Hasil Perumusan Topik

Perumusan topik pada penelitian ini berkaitan dengan potensi limbah yang dijadikan sebagai produk bernilai tinggi seperti *food fortification, edible film* dan antioksidan. Pemilihan ketiga produk ini didasari dengan banyaknya kandungan bioaktif dalam limbah anggur seperti senyawa fenolik (asam galat), polifenol (resveratrol, katekin, epikatekin, antosianin, asam galat, quercetin dan lain lain) dan beberapa jenis asam lemak (Chen *et al.*, 2020). Dengan adanya pemanfaatan limbah anggur tersebut tentunya dapat mengurangi kehilangan dan limbah buah anggur dalam rantai pasok. Penelitian mengenai pemanfaatan limbah anggur sebagai bahan fortifikasi, *edible film* dan antioksidan menggunakan metode ekstraksi konvensional sudah ada yang membahas sebelumnya, tetapi masih belum banyak ditemukan pembahasan yang mendetail mengenai pemanfaatan limbah anggur menggunakan metode non-konvensional. Padahal metode non-konvensional dapat dijadikan sebagai metode alternatif dalam mengekstrak senyawa limbah anggur hal tersebut dikarenakan metode ini ramah lingkungan dan efisien. Dengan mengetahui rumusan topik yang dibahas, selanjutnya dilakukan perumusan tujuan *review*.

3.1.2. Perumusan Tujuan Review

Perumusan tujuan *review* didasarkan pada permasalahan yang ditemukan dalam beberapa literatur yang telah dipublikasikan. Permasalahan tersebut berupa pemanfaatan senyawa bioaktif dalam limbah anggur sebagai bahan fortifikasi, *edible film* dan antioksidan yang diproses menggunakan metode konvensional. Padahal metode konvensional dikenal sebagai metode yang tidak efisien dan kurang ramah lingkungan jika dibandingkan dengan metode non-konvensional. Permasalahan lain yang ditemukan yaitu pemanfaatan limbah anggur masih belum marak diimplementasikan dalam skala industri. Hal itu dikarenakan adanya pertimbangan terhadap karakteristik senyawa yang dihasilkan dari proses ekstraksi, prospek penerapan teknologi ekstraksi dengan pelarut yang tidak beracun dengan biaya yang rendah agar dapat diimplementasikan dalam skala industri serta standarisasi keamanan pangan.

Berdasarkan permasalahan yang ditemukan kemudian ditetapkan tujuan *review* antara lain mengetahui dan mendeskripsikan kondisi keberadaan limbah buah anggur yang dilihat secara kualitas dan kuantitas di sepanjang rantai pasok, untuk menghimpun dan mengevaluasi kelayakan teknologi valorisasi dari kehilangan dari limbah buah anggur dalam menghasilkan produk yang berpotensial seperti bahan fortifikasi, *edible film*, antioksidan, dan untuk mengevaluasi peluang dan tantangan aplikasi teknologi valorisasi dalam industri.

3.2. Studi Pustaka Utama

3.2.1. Hasil Pengumpulan Pustaka

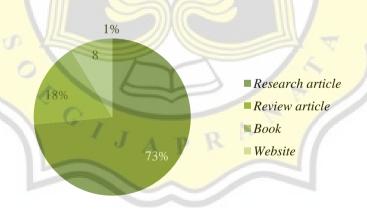
Pengumpulan literatur dilakukan dengan memanfaatkan beberapa sumber yang berasal dari buku, artikel ilmiah ataupun jurnal. Situs web yang digunakan terdiri dari sciencedirect, Google Scholar dan Researchgate. Berdasarkan pencarian literatur yang telah dilakukan, maka hasil pengumpulan pustaka utama dapat disajikan dalam bentuk seperti berikut ini:

Tabel 5. Daftar Situs Web dan Kata Kunci Pengumpulan Literatur Tambahan

Situs Web	Situs Web Kata Kunci	
	Grape pomace as potential valorization	736
Science Direct	Bioactive compounds recovery in grape pomace	1.200
	Grape by-product for food	9.198

Situs Web	Kata Kunci	Jumlah
	Recovery method in grape valorization	5
	Purchase intention of grape valorization	37
	Potential toxin in grape pomace	377
	Grape pomace as food fortification	258
	Grape pomace as antioxidant	2900
	Grape pomace as edible film	491
	Grape pomace as potential valorization	10.000
	Potential toxin in grape pomace	18.200
C 1 C 1 1	Recovery method in grape valorization	18.000
Google Scholar	Grape pomace as food fortification	15.900
	Grape pomace as antioxidant	26.100
	Grape pomace as edible film	4.780
2	Grape pomace as potential valorization	100++
	Purchase intention of grape pomace valorization	100++
	Grape by-product for food	100++
Researchgat <mark>e</mark>	Grape pomace as food fortification	100++
	Grape pomace as antioxidant	100++
	Grape pomace as edible film	100++

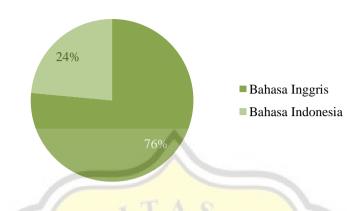
Tabel 5., dapat dilihat bahwa pengumpulan literatur tambahan dilakukan dengan memanfaatkan 3 jenis situs web yaitu science direct, google scholar dan researchgate sedangkan kata kunci yang digunakan terdiri dari 'grape as potential valorization', 'bioactive compounds recovery in grape pomace', grape by-product for food', 'recovery method in grape valorization', purchase intention of grape pomace', 'potential toxin in grape pomace' dan lain sebagainya.


3.2.2. Hasil Penyaringan Pustaka

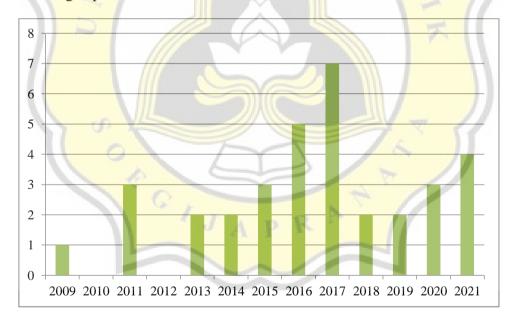
Penyaringan literatur pustaka utama dilakukan dengan menggunakan kriteria inklusi dan eksklusi. Kriteria inklusi dan eksklusi dalam penyaringan pustaka ditunjukkan dalam Tabel 6., dibawah ini:

Tabel 6. Kriteria Inklusi dan Eksklusi pada Literatur Tambahan yang digunakan No Kriteria Inklusi Kriteria Eksklusi

No	Kriteria Inklusi	Kriteria Eksklusi
1	Pemanfaatan limbah (kulit, biji) buah	Di luar dari kriteria inklusi
	anggur sebagai pangan fungsional	
2	Proses pengekstraksi limbah buah anggur	
	dari segi konvensional dan non-	
	konvensional	
3	Minat konsumen terhadap produk	•
	sampingan dari limbah buah anggur	
4	Teknologi pemanfaatan limbah (kulit, biji)	
	buah anggur sebagai pangan fungsional	
5	Potensi senyawa toksik pada limbah	F
	anggur	


Literatur yang disaring kemudian di cek kualitasnya menggunakan 2 situs web yaitu SCIMAGO dan SINTA. Pada pengumpulan literatur tambahan dikumpulkan sebanyak 34 literatur. Literatur tambahan yang telah dikumpulkan kemudian digabungkan dengan 36 literatur awal sehingga menghasilkan literatur berjumlah 70. Hasil penyaringan pustaka yang telah dilakukan ditunjukkan dalam diagram dan grafik seperti dibawah ini:

Gambar 9. Jenis Literatur yang ditemukan


Setelah melalui proses penyaringan berdasarkan kriteria inklusi dan eksklusi, terdapat beberapa jenis pustaka yang sesuai dan digunakan selama melakukan *review*. Berdasarkan Gambar 9., ditunjukkan bahwa jenis pustaka yang digunakan terdiri dari 3 macam yaitu *research article*, *review article* dan buku. Untuk *research article* memiliki persentase sebesar 73% dengan jumlah 25 jenis artikel. *Review article* memiliki

persentase sebesar 18% dengan jumlah 6 artikel *review* sedangkan untuk buku memiliki persentase sebesar 9% dengan jumlah 3 buku.

Gambar 10. Bahasa yang digunakan dalam Literatur

Berdasarkan Gambar 10., diatas, ditunjukkan bahwa bahasa literatur yang digunakan paling banyak adalah Bahasa Inggris dengan persentase sebesar 78%, dan Bahasa Indonesia dengan persentase sebesar 22%.

Gambar 11. Tahun Terbit Literatur yang digunakan

Berdasarkan Gambar 11., diatas, ditunjukkan bahwa tahun terbit literatur yang digunakan berada di antara tahun 2009 hingga 2021. Literatur yang banyak digunakan berasal dari tahun terbit 2017 sedangkan yang sedikit berasal dari tahun 2009. Literatur dengan tahun terbit 2017 berjumlah 7 dan tahun 2009 berjumlah 1 sedangkan untuk ranking dari literatur yang digunakan, paling banyak berasal dari ranking Q1 untuk berbahasa inggris dan S1 untuk berbahasa Indonesia (grafik tidak ditampilkan).

3.2.3. Hasil Pemetaan Pustaka

Pemetaan pustaka didasarkan pada 4 kategori yaitu: keberadaan limbah, status valorisasi, tantangan dan peluang. Berdasarkan hasil pengumpulan literatur dan penyaringan literatur, didapatkan hasil pemetaan dari literatur yang ditunjukkan dalam tabel seperti berikut:

3.2.3.1. Keberadaan Limbah Anggur

Berikut ini adalah tabel mengenai keberadaan limbah anggur yang dijumpai di beberapa literatur yang telah terkumpul. Keberadaan limbah anggur disajikan pada tabel berikut:

Tabel 7. Keberadaan Limbah

	No Penulis 1	ulis Jenis Limbah	Parame	Parameter Parameter		Jenis dan
No			Total Produksi	Senyawa Bioaktif	Potensi Manfaat	Peringkat Publikasi
1	(Beres <i>et al.</i> , 2017).	Tangkai dan biji anggur	1 kg = 0,75 L wine merah. 3% GP digunakan sebagai pakan hewan, kompos, bahan pembangunan.		inflamasi, antimikroba, antioksidan, anti-trombotik, kardioprotektif dan	·
2	(Rajabi <i>et al.</i> , 2015).	K ulit, tangkai dan biji	30-38% anggur dibuang dari rantai pasok pangan (harvesting, transportasi,		-	Research, (Q2) SCIMAGO

-		Jenis	Parame	ter		Jenis dan
No	Penulis	Limbah	Total Produksi	Senyawa Bioaktif	Potensi Manfaat	Peringkat Publikasi
		anggur	penyimpanan, sorting, wholesale, and retail). Di kota Takestan, sekitar 53% produksi anggur yang akan dikonversi menjadi food loss dan waste.	TAS		
3	(Hogervorst et al., 2017).		20% GP diperoleh dari proses pembuatan wine, dan 6 L wine → 1 kg pomace. 1 ton GP terdiri dari 430 kg kulit, 250 kg ranting.	52% tanin, asam protocatechuic, (quercetin-3-O-glucuronide), proantosianidin, tokoferol dan tokotrienol.	Antioksidan, antimikroba, anti-inflamasi, anti kanker dan pencegah kardiovaskular, mengurangi resiko penyakit kronis.	Book
4.	(Kosseva, 2020)	-	Grape pomace terdiri dari kulit, biji, sisa pulp, dan tangkai (15-25%) dari total berat buah anggur. Sebanyak 20% grape pomace diperoleh dari proses pembuatan wine, dan 6 L wine dapat menghasilkan 1 kg pomace dan dapat mencapai 10 juta ton per tahun.	lemak (6,9), karbohidrat (28,1±5), pectin (5,4-5,7), selulosa (9,2-14,5), lignin (11,6-17,2), hemiselulosa (4,0-10,3), dan protein (7,0-14,0) %		Book
5.	(Dhekney, 2016)	Kulit dan biji anggur	- Or J	Flavonoid, polifenol non flavonoid	Mencegah aterosklerosis dengan menghambat proses oksidasi LDL dan penumpukan plak di arteri → menyebabkan penyumbatan arteri.	Book
6.	(Iriti et al.,	-	-	Senyawa polifenol	Mengurangi tingkat resiko	Book

		Jenis	Parame	ter		Jenis dan
No	Penulis	Limbah	Total Produksi Senyawa Bioaktif		Potensi Manfaat	Peringkat Publikasi
	2016).				kardiovaskular.	_
7.	(Schieber, A. 2019)		Grape pomace terdiri dari stem, skin dan seed.	Antosianin dalam kulit anggur memiliki karakteristik berwarna merah. Karakteristik fenolat non-antosianin terdiri dari katekin, proantosianidin, glikosida flavonol, asam fenolat, dan stilbene.	Senyawa lain bermanfaat sebagai antioksidan dan antimikroba.	Book
8.	(Davila <i>et al.</i> , 2017)		Grape pomace terdiri dari batang (2,5-7,5%), kulit, pulp (15 dry, wet up to 25-45%), dan biji (3-6%).	Kulit: flavanal-3-ols (katekin, epikatekin, epikatekin, epikatekin, epikatekin, galokatekin, dan epigalokatekin), antosianin (delphinidin, cyaniding, petunidin, peonidin, malvidin etc), flavonol, asam hydroxibenzoat, stilbene, dan asam hydroxinamat. Biji: 5-8% senyawa fenolik, serat, lemak, protein, karbo, mineral)	Berperan sebagai antioksidan yaitu menghambat proses oksidasi lipid	Book
9.	(Mejia <i>et al.</i> , 2021).	Biji anggur		Asam oksalat	Antioksidan – menghambat pembentukan TBARS, hidroperoksida, antimikroba	(Q1)

	Penulis	Jenis —	Param	eter		Jenis dan
No		Limbah	Total Produksi	Senyawa Bioaktif	Potensi Manfaat	Peringkat Publikasi
					dan mencegah oksidasi lipid.	
10.	(Ng <i>et al.</i> , 2016)	-	I RSI	Kandungan minyak pada biji anggur: 10,45 – 16,73% asam lemak utama seperti linoleat, oleat, palmitat, β-sitosterol.	Berperan sebagai molluscidal, insektisida, dan antimikroba yang digunakan dalam pelapisan telur dengan minyak biji anggur untuk: memperpanjang umur simpan.	Book

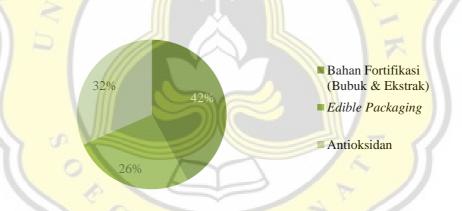
Keterangan:

GP: Grape pomace

Tabel 7., menunjukkan sejumlah keberadaan limbah anggur yang dilihat dari segi total produksi, senyawa bioaktif dalam limbah anggur dan potensi manfaat dari senyawa bioaktif. Sekitar 30-38% limbah anggur berasal dari pemanenan, transportasi, penyimpanan, sorting, wholesale, dan retail (Rajabi et al., 2015). Sebanyak 1 kg limbah anggur setara dengan 0,75 liter produksi wine merah dan pemanfaatan limbah digunakan sebagai pakan ternak/hewan, kompos dan bahan pembangunan (Beres et al., 2017). 1 ton GP terdiri dari 430 kg kulit, 250 kg ranting (Hogervorst et al., 2017). Kulit, tangkai, dan limbah biji anggur terkandung banyak senyawa bioaktif dan kandungan gizi seperti seperti 52% tanin, asam protocatechuic, flavonol, proantosianidin, tokoferol, dan tokotrienol sedangkan untuk kandungan gizi terdiri dari lemak, karbohidrat, pectin, selulosa, lignin, hemiselulosa, dan protein (Kosseva, 2020). Manfaat yang diperoleh terdiri dari sebagai antioksidan, antimikroba, antikanker, pencegah kardiovaskular, mengurangi resiko penyakit kronis, mencegah aterosklerosis, mengurangi tingkat resiko kardiovaskular (Dhekney et al., 2016; Iriti et al., 2016; & Davila et al., 2017).

3.2.3.2. Valorisasi Limbah Anggur

Berikut ini adalah tabel mengenai valorisasi limbah anggur yang dijumpai pada beberapa jenis literatur yang telah dikumpulkan. Valorisasi limbah anggur disajikan pada tabel berikut:


	Tabel 8. Valorisasi Limbah Anggur									
No	Penulis	Jenis	Parameter			LA	- Aplikasi	Efek Terhadap Produk	Catatan	
	1 Chans	Limbah	Metode	Pelarut	Suhu	Waktu	Приказі	Lick Temadap Froduk	Catatan	
1.	(Setiaw ati et al., 2017)	Kulit	Ekstraksi Maserasi	100 ml Air	70 °C (peman asan), ±50 °C (homog enisasi)	艾	Jelly drink	Penambahan kulit berpengaruh terhadap total antosianin, vit C, fenol, antioksidan, warna, aroma, rasa (>). Perlakuan paling cocok: 500 gr	Research, (S4) SINTA	
2.	(Anna <i>et al.</i> , 2014)		Ekstraksi (Follin Ciocalteau method)	50 ml of 0,5×11 ⁻ 1 etanol	I60 °C	1 jam	Pasta	Bubuk limbah kulit anggur berbanding lurus dengan total fenol, tanin dan antosianin serta mengurangi penerimaan aroma, rasa, penampilan dan <i>aftertaste</i> konsumen.	Research, (Q1) SCIMAGO	
3.	(Torii et al., 2016)	anggur	Ekstraksi konvensiona l		54°C	48 jam A P	Cheese	Texture keju dipengaruhi penambahan bubuk limbah kulit anggur, semakin banyak bubuk maka semakin terasa granularity sensation dari keju yang dikarenakan particle size dari bubuk yang digunakan. → roughness, decreased attributes as smooth, creamy, fatty, and slippery	Research, (Q1) SCIMAGO	
4.	(Bender <i>et al.</i> , 2016)		Ekstraksi refluks	Etanol	55°C	30 min	Muffins	Penambahan Bubuk limbah kulit anggur Tannat & Riesling tidak memberikan efek negatif. Persentase	Research, (Q3) SCIMAGO	

No	Penulis	Jenis		Paramet	ter		Anlikogi	Efak Tarbadan Draduk	Catatan
NO	Penuns	Limbah	Metode	Pelarut	Suhu	Waktu	- Aplikasi	Efek Terhadap Produk	Catatan
						\triangle		5; 7,5; dan 10% mempengaruhi tekstur, kekerasan (†), warna (†).	
5.	(Hoye et al., 2011)		Ekstraksi maserasi	30 ml <i>n</i> -hexana, -10 ml 70% etanol	70°C	20 min -12 jam	Bread / roti	Bubuk limbah biji anggur: protein >, moisture <, ash >. Bubuk 5 gr menyebabkan sensori roti menjadi keras, porositas meningkat, bread brightness menurun, volume menurun, rasa manis yang sedikit.	Research, (Q1) SCIMAGO
6.	(Sogut & Seydim , 2018)		Ekstraksi maserasi	Air suling	25°C	6 jam	Nanofiller in edible film	Sebagai antioksidan, antibakteri dan antimikroba yang dapat memperpanjang umur simpan makanan	Research, (Q1) SCIMAGO
7.	(Munir <i>et al.</i> , 2019)	Biji anggur	Ekstraksi maserasi	Etanol			Edible film for Surimi	Cross-linking protein ikan dan senyawa fenolik menyebabkan kualitas dan umur simpan makanan menjadi meningkat, dan menjadi pelindung dari lingkungan luar	Research, (Q1) SCIMAGO
8.	(Xiong <i>et al.</i> , 2020)	-	Ekstraksi konvensiona l	etanol	70°C	4	Edible coating for fresh pork	Menghambat oksidasi daging dan pembusukan mikroba, meningkatkan aktivitas antioksidan dan meningkatkan efek pengawet	Research, (Q1) SCIMAGO
9.	(Duran <i>et al.</i> , 2016)	_	Ekstraksi konvensiona l	Etanol	40°C	A P	Film for fresh strawberry	Meningkatkan umur simpan dan kualitas <i>strawberry</i> selama proses penyimpanan. Antibakteri – khususnya melawan bakteri mesofilik aerobic	
10.	(Theag	Kulit	Ekstraksi	Air	60°C	12 jam	Cookies	Bubuk limbah anggur tidak	Research,

No	Penulis	Jenis		Parame	ter		Aplilzagi	Efak Tarbadan Draduk	Catatan
	Penuns	Limbah	Metode	Pelarut	Suhu	Waktu	- Aplikasi	Efek Terhadap Produk	Catatan
	arajan et al., 2019)	dan biji anggur	maserasi	suling				mempengaruhi parameter fisik <i>cookies</i> melainkan protein dan serat (\uparrow) . 6% GP memiliki antioksidan (\uparrow) , antosianin <i>loss</i> (\downarrow) , retensi kekerasan (\uparrow) .	(Q1) SCIMAGO
11.	(Parami ta <i>et al.</i> , 2016)		Ekstraksi Soxhlet	500 ml etanol	40- 50°C	-	Antioksida n	Ekstrak kulit buah dan biji anggur tidak mampu menghambat bakteri <i>P. acnes</i> pada 5 variasi konsentrasi yang dipakai.	Research, (S3) SINTA
12.	(Balli <i>et al.</i> , 2021)		Distilasi Sonikasi →	U.N.	II: 65°C	#	Antioksida n Tagliatelle pasta	Bubuk limbah anggur dari proses freeze dried lebih cocok ditambahkan sebagai nutraceutical value pada pasta dibandingkan bubuk dari distilasi karena total fenolik tidak terlalu banyak hilang (<20% lossnya).	Research, (Q1) SCIMAGO
13.	(Selani <i>et al.</i> , 2011)		Maceration extraction	100 ml etanol 80%	25±1°C	48 jam	Antioksida n pada raw dan cooked chicken	Antioksidan: mempertahankan stabilitas oksidatif produk ayam selama 9 bulan selama proses penyimpanan.	Research, (Q1) SCIMAGO
14.	(Garrid o <i>et al.</i> , 2011)		Methanolic Extraction	100 ml etanol	25±1°C	10 min	Antioksida n Pork burger	Tipe I memiliki antioksidan lebih tinggi dibandingkan yang lainnya.	Research, (Q1) SCIMAGO
15.	(Iora <i>et al.</i> , 2015)		Metode refluks	Phosphat e-citrate buffer 400 ml	80°C	2 jam	Antioksida n for food enrichment or	Antioksidan: mengurangi oksidasi lipid dalam daging ataupun makanan lain.	Research, (Q1) SCIMAGO

No	Penulis	Jenis		Parame	ter		Anlikosi	Efalt Tarbadan Droduk	Catatan
NO	Penuns	Limbah	Metode	Pelarut	Suhu	Waktu	- Aplikasi	Efek Terhadap Produk	Catatan
		<u>-</u> '					enhancing		
16.	(Sporin <i>et al.</i> , 2017)	_	Solid phase extraction	100% methanol (3ml), 10% aqueous methanol (3ml)	80°C	3 jam	Bread	Penambahan 6, 10 dan 15% bubuk limbah anggur pada <i>wheat flour content</i> . TPC dan aktivitas antioksidan ↑, tetapi <i>darker color</i> ↓.	Research, (Q2) SCIMAGO
17.	(Ayerdi <i>et al.</i> , 2009)	-	Ekstraksi konvensiona l	(methano l-water 50:50)	-	+	GADF dalam cooked chicken hamburger	Mereduksi radikal bebas dan oksidasi lipid sehingga makanan menjadi lebih tahan lama	Research, (Q1) SCIMAGO
18.	(Gutierr ez et al., 2018)	-	Sonikasi	25ml etanol + 0,01 HCl	40°C		Natural filler in thermoplas tic starch	Senyawa fenolik pada ekstrak limbah anggur ataupun bubuk limbah anggur telah melakukan <i>cross-linking</i> agent dengan TSC. Melindungi pigmen selama <i>blending/processing</i> sehingga <i>film</i> akan lebih tahan pada perubahan pH	Research, (Q1) SCIMAGO
19.	(Yu et al., 2020)	-	-		6,		Bahan Fortifikasi <i>Cookies</i>	Cookie Baking tidak dapat mengurangi OTA	Research, (Q1) SCIMAGO

Tabel 8, menunjukkan sejumlah valorisasi limbah anggur dalam industri pangan dengan menggunakan beberapa jenis metode dan efek terhadap produk. *Pre-treatment* yang dilakukan dapat berupa *freeze dried, dried* dibawah sinar matahari maupun di dalam *oven*, dan *mincing/grounding* (Torii *et al.*, 2016 & Theagarajan *et al.*, 2019). Limbah anggur digunakan sebagai bahan fortifikasi, *edible film* dan antioksidan pada makanan. Limbah anggur sebagai bahan fortifikasi dapat diaplikasikan pada beberapa jenis makanan dan minuman seperti *pasta, cheese, muffins, bread, cookie* dan *jelly drink* (Setiawati *et al.*, 2017; Anna *et al.*, 2014; & Hoye *et al.*, 2011) sedangkan untuk aplikasi limbah anggur sebagai *edible film* dan antioksidan diaplikasikan pada produk berbasis daging, *seafood*, dan juga buah (Sogut & Seydim, 2018; Munir *et al.*, 2019). Metode yang digunakan untuk mendukung pemanfaatan limbah anggur ini terdiri dari metode ekstraksi konvensional (maserasi dan soxhlet), sonikasi, *solid phase extraction*, dan *pectin extraction*.

Gambar 12. Pemanfaatan Limbah Buah Anggur

Gambar 12., dapat dilihat pemanfaatan limbah anggur dalam industri pangan yang terdiri dari bahan fortifikasi, *edible film* dan antioksidan. Limbah anggur yang dijadikan sebagai bahan fortifikasi pada makanan berasal dari bahan fortifikasi yang telah menjadi serbuk/bubuk dan ekstrak. Pemanfaatan lain pada buah anggur adalah sebagai antioksidan. Antioksidan paling banyak diaplikasikan pada bahan pangan

seperti daging, buah dan *seafood*. Tentunya dengan keberadaan antioksidan pada bahan pangan dapat menghambat oksidasi lipid atau pembusukan pada bahan pangan. Dan yang terakhir adalah pemanfaatan limbah anggur sebagai *edible film*.

3.2.3.3. Tantangan

Berikut ini adalah tabel mengenai tantangan yang dijumpai pada status valorisasi berbagai bagian limbah anggur untuk menghasilkan produk bernilai tinggi. Tantangan dalam proses valrossasi untuk menghasilkan produk bernilai tinggi, disajikan pada tabel berikut:

Tabel 9. Tantangan Implementasi Produk Valorisasi

			1 aber 9. 1 a	intangan implementa	SI I IOUUK Valoiisasi	
No	Penulis	Aplikasi dalam Dunia Pangan	S <mark>enyawa</mark> Bioaktif /Sifat Bahan	Kar <mark>akter</mark> istik Bi <mark>oak</mark> tif/Bahan	Efek Terhadap Produk/Manusia	Metode
1.	(Anna <i>et al.</i> , 2014)		Antosianin	Sensitif terhadap panas, cahaya, UV, dan pH	Terjadi degradasi termal ataupun adanya reaksi <i>Maillard</i> terhadap antosianin yang mengakibatkan penurunan L* dan b* value pada pasta, dan membuat a* value meningkat	Ekstraksi konvensional (Folin-Ciocalteau <i>Method</i>)
	(Anna <i>et al.</i> , 2014)	Bahan fortifikasi	(%)	Tingkat	Mengurangi <i>firmness</i> pada pasta, meningkatkan kekerasan pada pasta karena gel tidak terbentuk dengan baik	Ekstraksi konvensional (Folin-Ciocalteau <i>Method</i>)
2.	(Bender <i>et al.</i> , 2016)		Inulin	penyerapan air yang tinggi dan mudah dalam membentuk gel	Kekerasan <i>muffin</i> meningkat dikarenakan pembentukan gel yang tidak stabil yang dimana inulin belum mampu menggantikan lemak sepenuhnya sehingga <i>hardness</i> meningkat (Pratiwi <i>et al.</i> , 2016)	Ekstraksi refluks
3.	(Anna <i>et al.</i> , 2014)		Tanin	Tanin memberikan rasa	Memberikan rasa <i>astringent/ aftertaste</i> pada pasta	Ekstraksi konvensional

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Karakteristik Bioaktif/Bahan	Efek Terhadap Produk/Manusia	Metode
				sepat dan mengikat protein		(Folin-Ciocalteau <i>Method</i>)
	(Theagarajan et al., 2019)			, alkaloid, dan gltin dengan sangat baik	Memberikan rasa pahit dari gugus polifenolnya yang dapat mengikat dan menyusutkan protein → rasa kering dan kerutan dalam mulut (Bestari, 2018).	Ekstraksi maserasi
4.	(Torii <i>et al.</i> , 2016)	T	Particle size bubuk	Partikel size < 250µm yang digunakan	Sensasi granularity, kasar, berpasir → marbling aspect pada permukaan keju dan sourness, bitterness, astringency.	Ekstraksi konvensional
	(Sporin <i>et al.</i> , 2017)		12/	digunakan	Porositas remahan roti menjadi tidak homogen, tekstur berpasir	Solid phase extraction
	(Hoye <i>et al.</i> , 2011)		Flavan-3-Ols (antioksidan	Bersifat agak asam dan larut	Terjadi proses dehidrasi sehingga mengakibatkan rasa pahit (bitterness)	Ekstraksi maserasi
5.	(Sporin <i>et al.</i> , 2017)		utama), katekin, epikatekin dan proantosianidin	dalam basa, serta larut dalam pelarut polar dan non polar	dan intensitas astringency yang menurunkan rasa manis roti sehingga konsumen menjadi tidak tertarik	Solid phase extraction
6.	(Sporin <i>et al.</i> , 2017)		Senyawa fenolik	Menghambat kinerja enzim amilase	Maltosa (substrat) yang diproduksi menjadi tidak mencukupi sehingga ragi yang mengonsumsi substrat dalam menghasilkan gas menjadi terbatas $\rightarrow volume$ roti menjadi berkurang / kecil.	Solid phase extraction
7.	(Yu et al.,		Ochratoxin A	Mikotoksin	Produk menjadi terkontaminasi (tidak	Metode thermal

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Karakteristik Bioaktif/Bahan	Efek Terhadap Produk/Manusia	Metode
	2020;;) Senaye <i>et al</i> , 2015		5	TAS	aman), berpotensi terhadap penyakit kardiovaskular. Sebanyak > 10μg/kg OTA dapat	processing tidak efektif dalam
	Klimke & Wu, 2015		SE S	SILA	menyebabkan penyakit tumor saluran kemih pada manusia, nefropati endemic balkan (BEN), nefropati interstisial kronis (CIN) dan penyakit ginjal lainnya	
	(Garrido <i>et al.</i> , 2011)			Sensitif terhadap	Belum dapat menghambat pembusukan dari 3 kelompok bakteri selama proses penyimpanan. Warna pork burger yang menurun akibat interaksi antar oksidasi lipid dengan myoglobin yang menghasilkan produk sekunder seperti aldehida.	
8.	(Iora <i>et al.</i> , 2015)	Antioksidan	Antosianin	panas, cahaya, UV, pH dan	Penurunan kandungan atau aktivitas antioksidan	Ekstraksi refluks
	(Balli <i>et al.</i> , 2021)	alami		proses distilasi	ditambahkan sebagai nilai gizi pada pasta	Distilasi → Sonikasi
	(Paramita <i>et al.</i> , 2016)			VAP	Terjadinya degradasi sehingga tidak memberikan respon hambatan terhadap pertumbuhan bakteri <i>P. acnes</i> dan <i>S. aureus</i>	Ekstraksi soxhlet
9.	(Selani et		Proantosianidin	Senyawa dengan	Belum dapat menghambat ketengikan	Ekstraksi

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Karakteristik Bioaktif/Bahan	Efek Terhadap Produk/Manusia	Metode
	al., 2011)		6	jumlah gugus aromatik –OH yang banyak	oksidatif → senyawa oksidatif pada frozen chicken selama penyimpanan beku yang disebabkan oleh mikrobiologis dan enzimatis sehingga menimbulkan bau tak sedap / tengik	maserasi
10.	(Sogut& Seydim, 2018)		Senyawa fenolik	+	Crosslinking yang terjadinya antar kitosan dan ekstrak mengakibatkan transparansi bernilai rendah serta fleksibilitas meningkat bersamaan dengan terjadinya penurunan kekuatan tarik (tensile strength) pada film	Ekstraksi maserasi
	(Munir et al., 2019)	Edible film			Mengurangi efek <i>plasticizer</i> dalam <i>film</i> sehingga mengakibatkan <i>film</i> menjadi kaku, kekuatan daya tarik rendah	
11.	(Munir <i>et al.</i> , 2019)		Antosianin	Senyawa pemberi pigmen merah	Mengurangi transparansi film	Ekstraksi maserasi
12.	(Gutierrez <i>et al.</i> , 2018)	1	Asam sitrat	Melting point 175°C	Kadar <mark>air pada <i>film</i> me</mark> njadi rendah	Ekstraksi sonikasi

Tabel 9., menunjukkan sejumlah tantangan dalam transformasi produk limbah anggur. Terdapat beberapa jenis senyawa bioaktif dan karakteristik bahan dalam limbah yang dipercaya dapat memberikan efek terhadap produk. Senyawa bioaktif memiliki karakteristik yang berbeda-beda seperti antosianin yang sensitif terhadap panas, cahaya dan memberikan efek warna merah/ungu (Anna *et al.*, 2014 & Balli *et al.*, 2021), inulin yang memiliki tingkat penyerapan air yang tinggi dan mudah dalam membentuk gel (Bender *et al.*, 2016), tanin yang

memberikan rasa pahit (Theagarajan et al., 2019). Efek limbah anggur yang diaplikasikan sebagai edible film membuat film menjadi kaku, memiliki tensile strength (kekuatan daya tarik) yang rendah dan tidak transparan (Sogut & Seydim, 2018; Munir et al., 2019; Gutierrez et al., 2018). Di sisi lain, pemanfaatannya sebagai antioksidan belum bisa menghambat pembusukan dan pertumbuhan dari bakteri P. acnes dan S. aureus (Garrido et al., 2011; Paramita et al., 2016). Ochratoxin A (OTA) merupakan mikotoksin pada limbah anggur yang dapat memberikan dampak buruk bagi kesehatan manusia. Penyakit yang akan ditimbulkan seperti penyakit tumor saluran kemih, nefropati endemic balkan (BEN), nefropati interstisial kronis (CIN) dan penyakit ginjal (Yu et al., 2020; Senaye et al, 2015; Klimke & Wu, 2015). Teknologi atau metode dalam pemanfaatan limbah anggur didominasi oleh metode konvensional seperti maserasi, refluks dan soxhlet.

3.2.3.4. Peluang

Berikut ini adalah tabel mengenai peluang yang dijumpai pada status valorisasi berbagai bagian limbah anggur untuk menghasilkan produk bernilai tinggi. Peluang dalam proses valrossasi disajikan pada tabel berikut:

Tabel 10. Peluang Implementasi dalam Valorisasi **Seny**awa Aplikasi dalam Perbaikan Karakteristik Manfaat No Penulis Bioaktif /Sifat Metode Recovery Dunia Pangan Bioaktif Bahan Ekstraksi non-Memberikan efek konvensional warna merah/keunguan MAE (Anna et al., Antosianin Setting-an proses pemanasan 1. dan bersifat sebagai 2014) (microwaveantioksidan Bahan assisted extraction) fortifikasi Sebagai prebiotik Penggunaan inulin diluar dari Ekstraksi nondalam membantu substitusi lemak. Pengganti gula (Anna et al., konvensional Inulin dan lemak dalam bahan pangan, 2014) meningkatkan jumlah MAE bakteri baik (probiotik) stabilizer (Pratiwi et al., 2016) (microwave-

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Manfaat	Perbaikan Karakteristik Bioaktif	Metode Recovery
	(Bender <i>et al.</i> , 2016)		68	dalam tubuh	Meningkatkan interaksi inulin dengan protein dan pati dengan menambah bahan fortifikasi sehingga dapat membentuk gel yang baik → menjadi tidak kasar (Pratiwi et al., 2016)	assisted extraction)
3.	(Anna <i>et al.</i> , 2014) (Theagarajan <i>et al.</i> , 2019)	1	Tanin	Sebagai anti bakteri, antioksidan dan antidiare.	Dilak <mark>ukan <i>pre-treatment</i> untuk mengurangi rasa pahit atau sepat yang dihasilkan</mark>	Ekstraksi non- konvensional MAE (microwave- assisted extraction)
4.	(Torii et al., 2016) (Sporin et al., 2017)		Particle size bubuk	Berkontribusi dalam memberikan pada produk tekstur	Menggunakan bubuk dibawah ambang batas 25μm (Torri et al., 2016)	Ekstraksi non- konvensional UAE (ultrasound- assisted extraction)
5.	(Hoye <i>et al.</i> , 2011) (Sporin <i>et al.</i> , 2017)		Flavan-3-Ols (antioksidan utama), katekin, epikatekin dan proantosianidin	Sebagai antioksidan dan antibakteri terhadap bakteri gram positif	Pre-treatment untuk mengurangi rasa pahit atau sepat yang dihasilkan	Ekstraksi non- konvensional MAE (microwave- assisted extraction)

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Manfaat	Perbaikan Karakteristik Bioaktif	Metode Recovery
6.	(Sporin <i>et al.</i> , 2017)		Senyawa fenolik	Bertindak sebagai antioksidan dalam mencegah proses oksidasi lipid dan mencegah proses pembusukan oleh bakteri		Ekstraksi non-konvensional UAE (ultrasound-assisted extraction)
7.	(Yu et al., 2020;;) Senaye & Williams, 2015 Klimke & Wu, 2015		Ochratoxin A		Kombinasi antara thermal pressure processing dan acid/enzyme treatment yang dapat mengurangi keberadaan OTA. Batas OTA dalam dry vine fruit adalah 10µg/kg. Prokol pasca panen yang ketat (pre-treatment)	-
8.	(Garrido et al., 2011) (Iora et al., 2015)	Antioksidan alami	Antosianin	Sebagai antioksidan dalam mendonorkan gugus H ke radikal reaktif untuk mencegah pembentukan radikal bebas	Memperbanyak dosis ekstrak yang ditambahkan sehingga dapat bertindak sebagai antimikroba dan antioksidan selama penyimpanan Proses pemanasan / penggunaan	Ekstraksi non-konvensional MAE (microwave-assisted extraction)
	(Balli et al.,				Penghilangan proses destilasi.	Ekstraksi non-

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Manfaat	Perbaikan Karakteristik Bioaktif	Metode Recovery
	2021)		5	SITAS		konvensional UAE (ultrasound- assisted extraction)
	(Paramita <i>et al.</i> , 2016)			#	Konsentrasi antosianin ditambahkan sesuai dengan kebutuhan sehingga bakteri dalam produk ataupun bahan dapat dihambat pertumbuhannya	Ekstraksi maserasi dengan etanol 70% pH 2.0 dan disimpan dalam kondisi gelap dengan suhu penyimpanan 4°C
9.	(Selani <i>et al.</i> , 2011)		Proantosianidin	Sebagai antioksidan dengan menyerap radikal bebas dalam mencegah oksidasi lipid	Kualitas ekstrak ditingkatkan dengan melakukan proses purifikasi	Ekstraksi non- konvensional PEF (pulsed electric field)
10.	(Sogut & Seydim, 2018)	Edible film	Senyawa fenolik	Bertindak sebagai antioksidan (memperpanjang umur simpan dengan mengurangi proses oksidasi lipid) dan antibakteri (menghambat E. coli,	Kitosan semakin banyak ditambahkan agar terjadi interaksi hidrogen dalam film → semakin kuat dan sulit untuk diputus karena memerlukan energi yang besar (Setiani et al., 2013)	Ekstraksi non- konvensional UAE (ultrasound- assisted extraction)

No	Penulis	Aplikasi dalam Dunia Pangan	Senyawa Bioaktif /Sifat Bahan	Manfaat	Perbaikan Karakteristik Bioaktif	Metode Recovery
				L. monocytogenes, S. aureus, dan P. aeruginosa)		
	(Munir et al., 2019)				Optimasi penggunaan senyawa dan protein (dicari kecocokan sehingga tidak menimbulkan kekakuan pada produk)	
11.	(Munir et al., 2019)		Antosianin	Mencegah transmisi UV dan cahaya tampak dari luar.		Ekstraksi non- konvensional MAE (microwave- assisted extraction)
12.	(Gutierrez <i>et al.</i> , 2018)		Asam sitrat	Bertindak sebagai pengawet	- \\\	Ekstraksi sonikasi

Tabel 10., menunjukkan sejumlah peluang dalam transformasi produk limbah anggur. Limbah anggur yang diaplikasikan dalam dunia pangan terdiri dari bahan fortifikasi, antioksidan dan edible film. Perbaikan terhadap senyawa bioaktif pada limbah anggur dapat dilakukan dengan cara pengontrolan dalam proses pemanasan sehingga kandungan fenolik tidak berkurang dalam mengurangi aftertaste dan peniadaan proses distilasi sebelum dilakukannya proses ekstraksi (Anna et al., 2014; Balli et al., 2021; Theagarajan et al., 2019; Hoye et al., 2011). Keberadaan Ochratoxin A pada limbah anggur dapat dicegah dengan melakukan kombinasi proses antara thermal pressure processing dan acid/enzyme treatment, serta penanganan pasca panen yang baik (sesuai dengan protokol) ((Yu et al., 2020; Senaye et al, 2015; Klimke & Wu, 2015). Substitusi teknologi/metode dalam pemanfaatan limbah anggur dari konvensional menjadi non-konvensional yaitu ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pulsed electric field extraction (PEF), dan sonikasi.