
13

IMPLEMENTATION AND TESTING

5.1 Implementation

In this project a series of microcontroller devices is programmed through the Arduino IDE

which has been installed on the board as a program controller. The programming language used is

the C programming language. The following is a brief description of the code.

Lines 1-8 are libraries used in the project so that they can carry out their functions to

connect to Wifi and send notifications to telegram, namely the wifi library, ESP32-Cam and

telegram.

1. #include <WiFi.h>
2. #include <WiFiClientSecure.h>
3. #include "soc/soc.h"
4. #include "soc/rtc_cntl_reg.h"
5. #include "esp_camera.h"
6. #include <UniversalTelegramBot.h>
7. #include <ArduinoJson.h>
8. #include <Wire.h>

Lines 10 – 14 are authentication for connecting to wifi and telegram bots, 10-11 is

authentication for WiFi settings by setting the SSID and WiFi password to be used, 12-13 is the

setting for the telegram bot. Previously bots were created by searching for the username

@BotFather in the search field will then get a special token to be able to access the HTTP API and

to control the Telegram BOT, line 14 is a condition for sending photos to position 0 or off.

9.
10. const char* ssid = "iphonefitria";

11. const char* password = "12345678";

12. String chatId = "1160943523";

13. String BOTtoken = "1705881550:AAGjOm-wCGODKxoyBhbCS4Jt0P_pg_mnQQE";

14. bool sendPhoto = false;

In lines 58- 69 is a declaration to try to connect a wifi connection

58. //library

59. WiFi.mode(WIFI_STA);

60. Serial.println();

61. Serial.print("Connecting to ");

62. Serial.println(ssid);

63. WiFi.begin(ssid, password);

14

64. while (WiFi.status() != WL_CONNECTED) {

65. Serial.print(".");

66. delay(500);

67. }

68. Serial.println();

69. Serial.print("ESP32-CAM IP Address: ");

70. Serial.println(WiFi.localIP());

Lines 126 – 132 are loops for flash and photo sending process.

126.
127. if (sendGambar){
128. Serial.println("Preparing photo");
129. sendGambarTelegram();
130. sendGambar = false;
131. flashLed = !flashLed;
132. digitalWrite(FLASH_LAMPU, flashLed);
133. }

Lines 134 – 147 are loops for the PIR sensor.

134.
135. if (sensor){
136. delay(1000);
137. if(digitalRead(pir) == 1){
138. flashLed = !flashLed;
139. digitalWrite(FLASH_LAMPU, flashLed);
140. Serial.print("Motion Detected, Value = ");
141. Serial.println(digitalRead(pir));
142. String motion = "Terdeteksi gerakan!!\n";
143. motion += "Foto akan segera dikirim\n";
144. bot.sendMessage(chatId, motion, "");
145. sendGambarTelegram();
146. flashLed = !flashLed;
147. digitalWrite(FLASH_LAMPU, flashLed);
148. }
149. }

Lines 162 – 191 encode the process of sending photos to the telegram bot. Image capture

on the ESP32-CAM is then connected to the “api.telegram.org” domain. After that, you can send

notifications to Telegram via the Telegram bot token that has been created.

162.
163.
164. String sendGambarTelegram(){
165. const char* myDomain = "api.telegram.org";
166. String getAll = "";
167. String getBody = "";
168.
169. camera_fb_t * fb = NULL;
170. fb = esp_camera_fb_get();
171. if(!fb) {
172. Serial.println("Camera capture failed");
173. delay(1000);

15

174. ESP.restart();
175. return "Camera capture failed";
176. }
177.
178. Serial.println("Connect to " + String(myDomain));
179.
180. if (clientTCP.connect(myDomain, 443)) {
181. Serial.println("Connection successful");
182.
183. String head = "--RandomNerdTutorials\r\nContent-Disposition: form-

data; name=\"chat_id\"; \r\n\r\n" + chatId + "\r\n--

RandomNerdTutorials\r\nContent-Disposition: form-data; name=\"photo\";

filename=\"esp32-cam.jpg\"\r\nContent-Type: image/jpeg\r\n\r\n";

184. String tail = "\r\n--RandomNerdTutorials--\r\n";
185.
186. uint16_t imageLen = fb->len;
187. uint16_t extraLen = head.length() + tail.length();
188. uint16_t totalLen = imageLen + extraLen;
189.
190. clientTCP.println("POST /bot"+BOTtoken+"/sendPhoto HTTP/1.1");
191. clientTCP.println("Host: " + String(myDomain));}

5.2 Testing

This study uses the RnD or Research and Development method to develop a tool and test

the effectiveness of the tool. So in this study several experiments were carried out with different

lighting. The test was carried out 10 times for bright and low light places.

Table 5.1 : Test scenario in brigt places

Distance

(meters)

System Response
Buzzer Response

Time (second)

Phone Response

Time(second)
Detection Notification Photo

Notification

48 detected Yes succeed 4.16 16.85

58 detected Yes succeed 2.45 12.07

65 detected Yes succeed 2.57 13.88

84 detected Yes succeed 5.22 16.46

120 detected Yes succeed 5.55 13.11

166 detected Yes succeed 6.48 14.77

185 detected Yes succeed 8.26 18.30

206 detected Yes succeed 7.36 20.48

270 detected Yes succeed 7.33 15.56

300 detected Yes succeed 9.74 19.80

330 detected Yes succeed 10.87 21.33

400 detected Yes succeed 12.90 22.41

16

430 not

detected

No not

successful

X X

Average 6.90 17.08

Table 5.1 shows that the maximum distance the tool can work to detect motion in bright

places is about 400 cm. This is because at a distance of more than 400 cm the tool does not detect

the movement that occurs.

Figure 5.1. System response in bright place

From the graph above shows that the system can work well in bright places, it can be seen

from the time the alarm sounds until the time it receives a text notification to the owner of the

telegram house, the fastest results are obtained when 0.5-1 meters.

4,16

2,45 2,57

5,22 5,55
6,48

8,26
7,36 7,33

9,74
10,87

12,9

16,85

12,07

13,88

16,46

13,11

14,77

18,3

20,48

15,56

19,8

21,33
22,41

,0

5,0

10,0

15,0

20,0

25,0

48 58 65 84 120 166 185 206 270 300 330 400 430

R
es

p
o

n
 T

im
e

(s
ec

o
n

d
)

Distance (Centimeter)

Distance vs System Response Time

Buzzer Response Time Phone Response Time

17

Table 5.2 : Test scenario in low light

Distance

(meters)

System Response
Buzzer Response

Time (second)

Phone Response

Time(second)
Detection Notification Photo

Notification

20 detected Yes succeed 7.11 13.03

60 detected Yes succeed 4.46 15.94

100 detected Yes succeed 5.47 18.82

150 detected Yes succeed 6,26 17.14

200 detected Yes succeed 9.77 21.11

240 detected Yes succeed 7.35 15.04

310 detected Yes succeed 7.64 12.22

350 detected Yes succeed 7.50 13.55

380 detected Yes succeed 7.54 13.77

400 detected Yes succeed 9.68 22.50

430 not

detected

No not

successful

X X

Average 7,27 16.31

Table 5.2 above shows that the tool can detect well at a distance of approximately 400 cm

in low light conditions. This test condition is carried out from a distance of 0.2-4 meters. This is

proven because at a distance of more than 4 meters the tool does not detect it. It can be seen when

the object is within the range of the sensor and the camera successfully detects it, a notification

message is sent to the user. Telegram Messenger users can also receive results on connected

telegrams. The average buzzer time is 7.27 seconds and the average first notification received by

the homeowner is around 16.31 seconds for low light.

18

Figure 5.2. System response in low light

Testing of the entire security system is carried out when the sensor detects human

movement, the buzzer turns on and when it sends a notification to the user's Telegram. The test

conditions were carried out from a distance of 0.2-4 meters. A good response time by the sensor

and providing the furthest distance is approximately 4 meters. From the results of the system

response test, seen from receiving text notifications to the homeowner's telegram, the fastest results

were obtained when they were 0.5-1 meters away.

From the table and graph data, it can be concluded that the system can respond well to

movement in bright and low light places. For the average delivery time, the test results are 6.90

for sufficient light and 7.27 for low light. From these results, it can be seen that the delay for bright

light is smaller than in low light. The distance test above is done so that the sensor can detect

movement and the camera can take pictures from a predetermined distance.

7,11

4,46
5,47

6,26

9,77

7,35 7,64 7,5 7,54

9,68

13,03

15,94

18,82

17,14

21,11

15,04

12,22
13,55 13,77

22,5

,0

5,0

10,0

15,0

20,0

25,0

20 60 100 150 200 240 310 350 380 400 430

R
es

p
o

n
 T

im
e

(s
ec

o
n

d
)

Distance (Centimeter)

Distance vs System Response Time

Buzzer Response Time Phone Response Time

19

Table 5.3 : Test scenario angle

Object Position Angle Test Result

30o not detected

45o detected

60o detected

90o detected

120o detected

150o not detected

In the table above, tests are carried out to determine the optimal angle of the PIR sensor in

the safety system to detect movement. This shows that humans will traverse the system by forming

various angles. The distance of this test is carried out with objects that pass as far as 1-2 meters.

This distance is still within the range of the PIR sensor and indicates that the detected object is not

always the same at the end of the corner. the table and graph data, it can be concluded that the

system can respond well to movement in bright and low light places.

