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IMPLEMENTATION AND TESTING 

5.1 Implementation 

In this project, I’m using Python language to process data. This chapter will explain how 

the program works. There are 4 main steps, which is : Preprocessing, TF-IDF, K-Means with 

statistical output, and analyzing output. 

5.2 Preprocessing 

First thing before working, the data need to preprocessed, so the data became clean and 

will gave the best result. Before that, the CSV data need to be imported to Pandas DataFrame. 

1. import pandas as pd 
2. dataset = pd.read_csv ("NewData/review_dataset/steam_reviews.csv") 
3. dataset['review_length'] = dataset.apply(lambda row: 

len(str(row['review'])), axis=1) 

4. dataset['sum_recommendation'] = dataset['recommendation'] == 

'Recommended' 

5. dataset['sum_recommendation'] = 

dataset['sum_recommendation'].astype(int) 

6. clean_data = dataset.dropna() 

 

the code above (line 3 – line 5) serves to create a new column in the variable dataset which 

will later be useful for analysis. Code (line 6) dataset.dropna() functions to delete all data that 

has a NaN or Null value. 

7. def remove_punctuation(text): 
8.     for punctuation in string.punctuation: 
9.         text = text.replace(punctuation, '') 
10.     return text 

11. stop = [“a”,”about”,”above”,...] 

12. def stopwords(text) 

13.   return " ".join([word for word in str(text).split() if word not in 

stop]) 

14. import string 

15.  

16. from emot.emo_unicode import UNICODE_EMO, EMOTICONS 

17.  

18. def remove_emoticons(text): 

19.     emoticon_pattern = re.compile(u'(' + u'|'.join(k for k in EMOTICONS) 

+ u')') 

20.     return emoticon_pattern.sub(r'', text) 

21.  

22. def remove_url(text): 
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23.     utl_prattern = re.compile(r'https?://\S+|www\.\S+') 

24.     return url_pattern.sub(r'', text) 

25.  

26. # lemmatization 

27. from nltk.corpus import wordnet 

28. from nltk.stem import WordNetLemmatizer 

29.  

30. lemmatizer = WordNetLemmatizer() 

31. wordnet_map = {"N":wordnet.NOUN, "V":wordnet.VERB, "J":wordnet.ADJ, 

"R":wordnet.ADV}  

32. #noun, verb, adjective, and adverb 

33.  

34. # function 

35. def lemmatize_word(text): 

36.     pos_tagged_text = nltk.pos_tag(text.split()) 

37.     return " ".join([lemmatizer.lemmatize(word, wordnet_map.get(pos[0], 

wordnet.NOUN)) for word, pos in pos_tagged_text]) 

38.  

39. # Tokenization 

40. def tokenize(text): 

41.     text = re.split('\W+', text) 

42.     return text 

 

Can be seen in line 11 there are 3 dots after  “above”  this is because there are 1532 words 

that are inputted as stopwords, I use this code because the stopwords provided by nlkt.corpus 

are incomplete. 

43. train = clean_data['review'].head(500) 

44. length = clean_data['review_length'].head(500) 

45.  

46. train = train.apply(stopwords) 

47. train = train.apply(remove_punctuation) 

48. train = train.str.lower() 

49. train = train.apply(remove_emoticons) 

50. train = train.apply(lemmatize_word) 

51. train = train.apply(stopwords) 

52. train_tokenize = train.apply(tokenize)returns varchar(100) 

 

Code above aims to run all the functions that have been created previously. The code on 

lines 43 and 44 aims to choose how much data will be processed next, this is happens because 

there is a limitation on the hardware that is not able to process 400 thousand data. 
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5.3 TF-IDF 

After done with preprocess the data, the next step is Term Frequency – Inverse Document 

Frequency. This steps will explain how TF-IDF implemented from scratch. 

53. train_revamp = [x for x in train if x != ''] 

54.  

55. length_list = length.tolist() 

56.  

57. for i in range(len(train)): 

58.     if train[i] == '': 

59.         print(i) 

60.  

61. for x in range(len(train)): 

62.     if train[x] == '': 

63.         del length_list[x] 

64.  

65. len(length_list) 

 

This code serves to prepare the data before it is processed for next steps. Line 53 serves to 

delete data on train which has a value of whitespace (‘ ‘). Line 57 – 59 aims to find out at what 

index the train variable has a whitespace, this aims to be a comparison of the result on line 65. On 

lines 55 and lines 61 – 63 aims to change the length variable into a list that is stored in length_list 

variable and delete all data that has whitespace values. 

66. removed_comp = [x for x in removed if x != ['']] 

67. removed_comp = [x for x in removed_comp if x !=[]] 

68.  

69. word_frequency = {} 

70. for i in range(len(removed_comp)): 

71.     tokens = removed_comp[i] 

72.     for word in range(len(tokens)): 

73.         snap = tokens[word] 

74.         try: 

75.             word_frequency[snap].add(i) 

76.         except: 

77.             word_frequency[snap] = {i} 

78.  

79. DF = {} 

80. for i in word_frequency: 

81.     DF[i] = len(word_frequency[i]) 

82.  

83. total_vocab = [x for x in DF] 

84. print(total_vocab) 
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Lines 66 – 67 have the same purpose as line 53, the difference is that line 53 processes data 

that has not been tokenized and lines 66 – 67 on data that has been tokenized. The output for the 

process on line 69 – 77 is a unique word with the order in which document it appears. On lines 79 

– 81 the code processes word_frequency so that is easier to read, with this the Document 

Frequency results have been obtained. Line 83 processes words in DF and creates a new 

dictionary. 

 

85. # TermFrequency 

86. idf = {} 

87. N = len(train) #total data inserted 

88. # no = 0 

89. for token in total_vocab: 

90.     data_freq = DF[token] 

91.     idf[token] = np.log10(len(train)/(data_freq))  

92. #counting idf = total review/DF[i] 

93.  

94. tf = {} 

95. for token in total_vocab: 

96.     vector_tf = [] 

97.     appears = word_frequency[token] 

98.     for document in range(len(removed_comp)): 

99.         doc_freq = 0 

100.         for word in nltk.word_tokenize (train_revamp[document]): 
101.             if token == word: 
102.                 doc_freq += 1 
103.         word_tf = doc_freq/len(removed_comp) 
104.         vector_tf.append(word_tf) 
105.     tf[token] = vector_tf 
106.  
107. tfidf = [] 
108. for token in tf.keys(): 
109.     sentence_tfidf = [] 
110.     for tf_sentence in tf[token]: 
111.         tfidf_score = tf_sentence * idf[token] 
112.         sentence_tfidf.append(tfidf_score) 
113.     tfidf.append(sentence_tfidf) 
114.  
115. model_tfidf = np.asarray(tfidf) 
116.  
117. weigth = [] 
118. for i in range(0, len(tfidf[0])): 
119.     tmp = 0 
120.     for j in range(0, len(tfidf)): 
121.         tmp = tmp + tfidf[j][i] 
122.     weight.append(tmp) 
123.  
124. weight_df = pd.DataFrame(data = weight, columns=['Weight']) 
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The final result of this process is weight array (line 117), then it converted into dataframe 

in line 124, this process is the preparation for the next step. 

5.4 K-Means Implementation 

The last step in this chapter is K-Means. 

125. df_2 =  pd.DataFrame(data = length_list, columns = [‘Text Length’]) 
126.  
127. class_row = weight_df.join(df_2) 
128.  
129. x = np.round(df_row.iloc[:,[0,1]].values,2) 
130.  
131. m = x.shape[0] 
132. n = x.shape[1] 
133.      
134. import matplotlib.pyplot as plt 
135. plt.scatter(x[:,0],x[:,1],c='black',label='unclustered data') 
136. plt.xlabel('Weight') 
137. plt.ylabel('Text Length') 
138. plt.legend() 
139. plt.title('Plot of data points') 
140. plt.show() 

 

in lines 129 -132 determine the value of each variable, x contains a 2-dimensional matrix 

of weight and length_list, then m contains the output of how many columns are in the matrix, and 

n contains how many rows are in the matrix. After input and preparation, the next step is to analyze 

the shape of the data to determine how many K values are needed. The output for line 134 -140 is 

as follows.  

 

Figure 5. 1 Output from line 134 - 140 
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141. K = 3 
142.  
143. Centroids = np.array([]).reshape(n,0) 
144.  
145. import random as rd 
146. for i in range(K): 
147.     rand = rd.randint(0,m-1) 
148.     print(rand) 
149.     Centroids = np.c_[Centroids, x[rand]] 
150.  
151. Output = {} 
152. count = 0 
153.  
154. while True: 
155.     EuclidianDistance = np.array([]).reshape(m,0) 
156.     for k in range(K): 
157.         tempDist = np.sum((x-Centroids[:,k])**2,axis=1) 
158.         EuclidianDistance = np.c_[EuclidianDistance, tempDist] 
159.     C = np.argmin(EuclidianDistance, axis=1)+1 
160.     Y = {} 
161.     for k in range(K): 
162.         Y[k+1] = np.array([]).reshape(2,0) 
163.          
164.     for i in range(m): 
165.         Y[C[i]] = np.c_[Y[C[i]], x[i]] 
166.  
167.     for k in range(K): 
168.         Y[k+1] = Y[k+1].T 
169.  
170.     for k in range(K): 
171.         Centroids[:, k] = np.mean(Y[k+1],axis=0) 
172.  
173.     if Output == {}: 
174.         Output = Y 
175.         count += 1 
176.         print('First Iteration') 
177.     else: 
178.         if K == 2: 
179.             if np.array_equal(Output[1], Y[1]) == True: 
180.                 if np.array_equal(Output[2], Y[2]) == True: 
181.                     if (Output[1] == Y[1]).all() == True: 
182.                         if (Output[2] == Y[2]).all() == True: 
183.                             print("Operation Done with : ", count, " 

Iteration") 

184.                             break 
185.                         else: 
186.                             Output = Y 
187.                             count += 1 
188.                     else: 
189.                         Output = Y 
190.                         count += 1 
191.                 else: 
192.                     Output[2] = Y[2] 
193.                     count += 1 
194.             else: 
195.                 Output[1] = Y[1] 
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196.                 count += 1 

 

On line 143 – 150 is a process to get the initial Centroids value, the process is done 

randomly and stored in an array. Variable K (line 141) is the number of clusters that will be used. 

Line 151 to completion is the initiation of the K-Means process. At the beginning of program of 

initiation, an Output variable as a Dictionary data type is created, this aims to store data of distance 

of each point to Centroids, so when using K = n then the Output dictionary will contain n arrays 

of lists. On line 154 – finished is the main code of K-Means. While (line 154) is used so that the 

program can count the number of iterations needed. tempDist (line 157) is a variable to store the 

value of the distance between Centroids and each data point. On line 173 a value checker is made 

for the first iteration, the reason why this is done is because an error will occur if program directly 

check the Output and Y variables, because these two variables have an output array, so comparing 

on different shapes will result in an error. 

 After finishing with the initial check, the next step is to see whether each array has a 

different value or not, on line 179 – 181 is a code to check whether each designated array has the 

same value, but will not return an error if it has a different shapes, return of this code is True and 

False. Because previously it has been confirmed to have the same shape, the on lines 181 – 190 

will be checking for the equality of each value, the .all() argument is used because when comparing 

2 arrays or more it will also return an array, therefore the .all() argument will function to returns 

only one value, if all return outputs are True then the argument will return True, but if there is one 

value with return False, then the argument will return False too. Furthermore, if both if returns 

True, then the next step is to stop the loop operation. 

The code that will be displayed below is a continuation of the code above. It has same 

function, only the difference is on if operand. 

197. elif K == 3: 
198.    if np.array_equal(Output[1], Y[1]) == True: 
199.     if np.array_equal(Output[2], Y[2]) == True: 
200.      if np.array_equal(Output[3], Y[3]) == True: 
201.       if (Output[1] == Y[1]).all() == True: 
202.        if (Output[2] == Y[2]).all() == True: 
203.         if (Output[3] == Y[3]).all() == True: 
204.          print("Operation Done with : ", count, " Iteration") 
205.          break 
206.         else: 
207.          Output = Y 
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208.          count += 1 
209.        else: 
210.         Output = Y 
211.         count += 1 
212.       else: 
213.        Output = Y 
214.        count += 1 
215.      else: 
216.       Output[3] = Y[3] 
217.       count += 1 
218.     else: 
219.      Output[2] = Y[2] 
220.      count += 1 
221.    else: 
222.     Output[1] = Y[1] 
223.     count += 1 
224.  
225. elif K == 4: 
226.    if np.array_equal(Output[1], Y[1]) == True: 
227.     if np.array_equal(Output[2], Y[2]) == True: 
228.      if np.array_equal(Output[3], Y[3]) == True: 
229.       if np.array_equal(Output[4], Y[4]) == True: 
230.        if (Output[1] == Y[1]).all() == True: 
231.         if (Output[2] == Y[2]).all() == True: 
232.          if (Output[3] == Y[3]).all() == True: 
233.           if (Output[4] == Y[4]).all() == True: 
234.            print("Operation Done with : ", count, " Iteration") 
235.            break 
236.           else: 
237.            Output = Y 
238.            count += 1 
239.          else: 
240.           Output = Y 
241.           count += 1 
242.         else: 
243.          Output = Y 
244.          count += 1 
245.        else: 
246.         Output = Y 
247.         count += 1 
248.       else: 
249.        Output[4] = Y[4] 
250.        count += 1 
251.      else: 
252.       Output[3] = Y[3] 
253.       count += 1 
254.     else: 
255.      Output[2] = Y[2] 
256.      count += 1 
257.    else: 
258.     Output[1] = Y[1] 
259.     count += 1 
260.  
261. elif K == 5: 
262.    if np.array_equal(Output[1], Y[1]) == True: 
263.     if np.array_equal(Output[2], Y[2]) == True: 
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264.      if np.array_equal(Output[3], Y[3]) == True: 
265.       if np.array_equal(Output[4], Y[4]) == True: 
266.        if np.array_equal(Output[5], Y[5]) == True: 
267.         if (Output[1] == Y[1]).all() == True: 
268.          if (Output[2] == Y[2]).all() == True: 
269.           if (Output[3] == Y[3]).all() == True: 
270.            if (Output[4] == Y[4]).all() == True: 
271.             if (Output[5] == Y[5]).all() == True: 
272.              print("Operation Done with : ", count, " Iteration") 
273.              break 
274.             else: 
275.              Output = Y 
276.              count += 1 
277.            else: 
278.             Output = Y 
279.             count += 1 
280.           else: 
281.            Output = Y 
282.            count += 1 
283.          else: 
284.           Output = Y 
285.           count += 1 
286.         else: 
287.          Output[5] = Y[5] 
288.          count += 1 
289.        else: 
290.         Output[4] = Y[4] 
291.         count += 1 
292.       else: 
293.        Output[3] = Y[3] 
294.        count += 1 
295.      else: 
296.       Output[2] = Y[2] 
297.       count += 1 
298.     else: 
299.      Output[1] = Y[1] 
300.      count += 1 
301.  
302. elif K > 5: 
303.    print("Process canceled, the maximum number of K is 5!!!") 
304.    Break 
305.  
306. The next code is to show the plot graph. 
307. color=['red','blue','green','cyan'] 
308. labels=['cluster1','cluster2','cluster3','cluster4'] 
309. for k in range(K): 
310.     plt.scatter(Output[k+1][:,0],Output[k+1][:,1], c=color[k] 

,label=labels[k]) 

311. plt.scatter(Centroids[0,:],Centroids[1,:],s=500,c='yellow',label='Cent
roids') 

312. plt.xlabel('weight') 
313. plt.ylabel('HourPlay') 
314. plt.legend() 
315. plt.show() 
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Output from code above is a plot graph with Centroids and different colors for each cluster. 

 

Figure 5. 2 Plot Graph for Clustered Data 

To obtain accuracy value, there some code needs to be added and changed, the changed 

code will be shown below. First thing line 129 need to be change with code below: 

316. x = np.round(df_rec.reset_index().values,2) 

The code above will change the matrix and save the index data which will be used in 

accuracy test. The next line is a new code, will be added after line 129. The code will show below: 

317. l = x.T 
318. l = l[1:].T 

The code above will create new variable that not contain index data. After this, line 157, 

and 162 will be replace with the following code sequentially: 

319. tempDist = np.sum((l-Centroids[1:,k])**2,axis=1) 
320. Y[k+1] = np.array([]).reshape(3,0) 

Next code will be changed is line 311 and 310, because now the matrix has changed into 

three-dimensional matrix so the pointer need to be fixed 

321. plt.scatter(Output[k+1][:,1],Output[k+1][:,2], c=color[k] 

,label=labels[k]) 

322. plt.scatter(Centroids[1,:],Centroids[2,:],s=500,c='yellow',label='Cent
roids') 

5.5 Analysis 

In this step a result will be carried out, there are several results and analysis that will be 

carried out, including how weight data compares to hour_play and helpful, then how the data 

distribution for the cluster using hour of played and helpful data. 
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5.5.1 Data Spread on hour_play and helpful 

In this sub-step, we will discuss how to spread the data if weight of TF-IDF is compared 

with hour_play and helpful data. 

 

Figure 5. 3 Helpful and Weight Plot 

It can be seen from the results above, the distribution of the data is not good, but this 

indicates that a review with a high weight which means it contains a lot of words and sentences 

does not determine that the review is good and helpful. For example, a review that has a weight 

exceeding 2.0 only get a helpful number that is even less than 250, while data with a weight of 

0.25 is able to get a helpful number more than 2000. 

 

Figure 5. 4 Hour Played and Weight Plot 
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Meanwhile, if viewed from the graph above, it proves that from 500 reviews collected, the 

total hours of played from the average reviewers are still in the range 0 – 1000 hours. It can also 

be seen that reviewers who provide reviews with a weight more than 2.0 have a fairly long hour 

of played, which is between 2500 and 3000 hours. 

5.5.2 Correlation between Hour of Played and Helpfulness 

This sub-step will discuss how the correlation between hours of played and helpful. 

 

Figure 5. 5 Hours of Played and Helpful Plot 

In the plot graph above, it can be seen that most of the reviewers who have high hour of 

played actually get 0 upvote, this will certainly raise suspicion, it because people believe that if 

reviewer have a higher play hour, it means they know the game more, about the mechanics and 

etc. which means they understand about the game better. But there are two possibilities that can 

make reviewers have the high number of upvotes: the first is Steam Curators, Steam Curators 

are individuals or organizations that make recommendations to help others discover interesting 

games on Steam catalog [14]. Then the second thing is fake reviews and fake upvotes, fake upvotes 

and reviews are usually done by the game developer, there is a way where developers can play the 

overall review by only adds a few positive reviews or downvotes only a few different negative 

reviews [15], of course this can affect the number of upvotes or helpful. However, if you look at 

Figure 5.5, reviewers who have 3500 hours of play actually give a review with a weight that is 

almost 0. 
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5.5.3 Correlation between Recommendation and Review 

Like the previous step, this step will discuss how the correlation between Recommendation 

and Review’s weight 

 

Figure 5. 6 Weight and Recommendation DataFrame 

In the figure above, it can be seen that each weight of the review has been paired with the 

Recommended column, in that column number 1 means recommended, and 0 means not 

recommended. With the data above, the distribution of data in the plot is obtained as follows 
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Figure 5. 7 Plot of Unclusterd Weight and Recommendation data 

 

Figure 5. 8 Plot of Clustered Weight and Reccomendation data 
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Table 5. 1 Table of Figure 5. 8 contents 

Cluster Recommendation Description Count 

1 0 Not Recommended 116 

2 1 Recommended 379 

Total 495 

From the results above, it can be concluded that K-Means is able to perform clustering 

correctly. From 500 raw data, 495 data have been clustered accurately. Actual data includes 379 

Recommended data and 116 Not Recommended data. From the reviews that were inputted and 

clustered, more than 75% of the reviews stated Recommended, this means more reviews stating 

that the game is worth buying and recommending. 

 

Figure 5. 9 Correlation between Recommendation and Helpful 

If Figure 5.9 compared to Figure 5.10, it is seen that less than 5% review state Not 

Recommended and have very low helpful numbers. 
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5.5.4 Accuracy 

Calculation of accuracy in this study will use Confusion Matrix method. The parameter for 

finding the accuracy is TP, and TN. TP or True Positive is when actual data is Recommended 

and predicted as Recommended as well. TN or True Negative is when actual data is Not 

Recommended and predicted as Not Recommended too. The accuracy for 100 sample will be 

shown below. 

Table 5. 2 Accuracy Table for 100 Sample Data 

100 data Predicted = Recommended Predicted = Not Recommended 

Actual = Recommended TP = 82 FN = 3 

Actual = Not Recommended FP = 12 TN = 0 

(TP + TN)/TOTAL= (82 + 0)/97*100 84.5360824 

The final accuracy for 100 sample data is 84.5%. 

The accuracy of 500 sample data will be shown below: 

Table 5. 3 Accuracy Table for 500 Sample Data 

500 data Predicted = Recommended Predicted = Not Recommended 

Actual = Recommended TP = 379 FN = 0 

Actual = Not Recommended FP = 0 TN = 116 

(TP + TN)/TOTAL= (379 + 116)/495 * 100 100 

The final accuracy for 500 sample data is 100% 

The accuracy score above taken with this utilizing the code below: 
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323. df_clust1_rec = pd.DataFrame(data = Output[1][0:,1:], index = 

Output[1][0:,0].astype(int), columns = ['Weight','Recommendation'])  

324.  
325. df_clust2_rec = pd.DataFrame(data = Output[2][0:,1:], index = 

Output[2][0:,0].astype(int), columns = ['Weight','Recommendation']) 

326.  
327. actual = pd.DataFrame(data = x[0:,1:], index = x[0:,0].astype(int), 

columns = ['Weight','Recommendation']) 

328.  
329. TP = 0 
330. FP = 0 
331. for i in range(len(df_rec)): 
332.     try: 
333.         if actual['Recommendation'][i] == 1: 
334.             if df_clust1_rec['Weight'][i] == actual['Weight'][i]: 
335.                 TP += 1 
336.         else: 
337.             if df_clust1_rec['Weight'][i] == actual['Weight'][i]: 
338.                 FP += 1 
339.     except KeyError: 
340.         Continue 
341.  
342. TN = 0 
343. FN = 0 
344. for i in range(len(df_rec)): 
345.     try: 
346.         if actual['Recommendation'][i] == 0: 
347.             if df_clust2_rec['Weight'][i] == actual['Weight'][i]: 
348.                 TN += 1 
349.         else: 
350.             if df_clust2_rec['Weight'][i] == actual['Weight'][i]: 
351.                 FN += 1 
352.     except KeyError: 
353.         Continue 
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5.5.5 Evaluation 

Based on the results and analysis above, the K-Means algorithm has given quite good 

result, the actual data and clustered data given the same result. However, for data that has values 

that tend to be same and less varied, it produces a bad clustered data. 

 

Figure 5. 11 Plot of Clustered Data between Weight and Hour of Played 

As in Figure 5.11 and 5.12, there are still many data that deviate and too far from the 

Centroids point. 

  

Figure 5. 10 Plot of Clustered Data between 

Weight and Helpful 


