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CHAPTER 5  

IMPLEMENTATION AND TESTING 

5.1 Implementation 

This chapter is talking about how the code being implemented after the long 

explanation in the previous chapter. Before jump to the data preparation, first the 

data must be known and checked by the user. Since the data has a lot of items, just 

show the top 10 of the data as the image below. 

 

 

To do the data preparation, the heatmap from the dataset must be shown 

with the code: 

1 

2 

3 

plt.figure(figsize=(20,20)) 

sns.heatmap(file[:-1].corr(), annot=True,cbar=False) 

plt.show() 

 
 

From line 1, give the output size of the image is 20 x 20. Line 2 means to call the 

heatmap with the column, without the last column (written: -1), with the correlation 

between the data. And line 3 shows the heatmap as below. 

Illustration 5.1. The head of the dataset 
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Illustration 5.2. Heatmap from the dataset 
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Each square in the heatmap shows the correlation between the variables on 

each axis, the correlation ranges from -1 to +1. The interpretation of the heatmap is 

the values closer to zero mean there is no linear trend between the two variables, 

the closer to 1 the correlation is the more positively correlated they are, and closer 

to -1 is similar, but instead of both increasing one variable will decrease as the other 

increases. After taking a look at the correlation in the heatmap, the next step is to 

show the histogram between each variable and their density. The main concern of 

this step is to find the normal distribution of each variable. Normal distribution is a 

statistical function that describes the likelihood of obtaining the most possible 

values that a real-valued random variable can take. The Normal distribution has a 

general form with formula: 

 

𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒−

1
2

( 
𝑥−𝜇

𝜎
 )2

  

 

Where, 𝜇 = Mean, 𝜎= Standard deviation, x = input value. 

In this project, the histogram will show the probability of every variable to the 

correlation with the prediction result. From the picture, the shape of the histogram 

will show which variables has a higher correlation. There will be 8 histograms 

shown below. 
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Illustration 5.4. Glucose and it's density graph 

Illustration 5.3. Pregnancy and it's density graph 
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Illustration 5.5. Blood pressure and it's density graph 

Illustration 5.6. Skin thickness and it's density graph 
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Illustration 5.7. Insulin and it's density graph 

Illustration 5.8. BMI and it's density graph 
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Illustration 5.9. Diabetes pedigree function and it's density graph 

Illustration 5.10. Age and it's density graph 
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The histograms above shows that the variable skin thickness and blood 

pressure have an unusual shape. The shape of their graphs has two peak that will 

affect the prediction result if they are used. To avoid that, feature transformation 

will be used, so the unusual histograms will return into usual with change the 

unknown values of the variables. The code of the feature transformation will be 

shown below. 
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file['BMI'] = np.where(file['BMI'] == 0, np.nan, file['BMI']) 

file['Glucose'] = np.where(file['Glucose'] == 0, np.nan, file['Glucose']) 

file['BloodPressure'] = np.where(file['BloodPressure'] == 0, np.nan, 

file['BloodPressure']) 

file['SkinThickness'] = np.where(file['SkinThickness'] == 0, np.nan, 

file['SkinThickness']) 

 

file['BMI'].fillna(27, inplace = True) 

file['Glucose'].fillna(file['Glucose'].mean(), inplace = True) 

file['BloodPressure'].fillna(file['BloodPressure'].mean(), inplace = True) 

file['SkinThickness'].fillna(file['SkinThickness'].mean(), inplace = True) 

 
 

  In line 1-6 is code to find the 0 value or the unknown value of each variable 

that written (BMI, glucose, blood pressure, and skin thickness). In line 8-11 is code 

to replace the unknown value into the mean of each variable data. After the code 

has been run, it will make a huge change to the histogram. The new histogram will 

be shown below. 
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Illustration 5.11. The new histogram of pregnancies 

 

 

 

Illustration 5.12. The new histogram of glucose 
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Illustration 5.13. The new histogram of Blood Pressure. 

 

 

 

Illustration 5.14. The new histogram of Skin Thickness. 
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Illustration 5.15. The new histogram of insulin. 

 

 

 

Illustration 5.16. The new histogram of BMI. 
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Illustration 5.17. The new histogram of Diabetes Pedigree Function. 

 

 

 

Illustration 5.18. The new histogram of Age. 
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From the whole images above, the histograms now show all normal 

distribution histograms with the usual data. These new histogram shows that all the 

data now could be processed and the result will be optimal since there is no 

unknown data. 

After transform the unknown value in the variables, then the data from all 

variables will be scaled in range 0 and 1. This step will make the data easier to be 

read by the computer. Since the last column of the data is an outcome (the patient 

has diabetes or not), then the last column will be deleted. The image below will 

show the result of the cleaning and scaling. 

 

When the data has been trained, the data will be tested split to prevent the 

model from overfitting, underfitting, and to accurately evaluate the model. To 

evaluate a model's predictive performance, the same data used for training cannot 

be used. It is because unbiased evaluation is needed to properly use the measures, 

assess the model's predictive performance, and validate the model. To do that, fresh 

data that has not been seen by the model before is needed by splitting the data set 

before it is used. In this project, the data split into 10% of the data that will be tested 

as the code below.  

Illustration 5.19. Cleaning and scaling the data 
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# from sklearn.model_selection import train_test_split 
 

def train_valid(data, frac= 0.1): 
    data_x = data 

    data_y = file['Outcome'] 
     

    train_x, valid_x, train_y, valid_y =    

train_test_split(data_x,data_y,test_size=frac) 

    return train_x,valid_x,train_y,valid_y 
train_x, valid_x, train_y, valid_y = train_valid(file_scaled) 

  

 
 

In line 1, the train test split from the Sci-Kit learn library is imported. Code 

in lines 3-9 used to define train valid data using the 10% of the data, it shows by 

frac of the data is 0.1. This line also defines the variables that are used to train test 

split with the return of the data that has been defined before. 

To make sure that the outcome data from the dataset is a good data that 

contain 0 and 1, data visualization is needed. In this case, seaborn library is used to 

count the plot of the “outcome” data and the result is shown on the image below. 
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From the graph above, the data contains 0 and 1 as the variable that affect 

whether the patient has a diabetes or not. The sum of the outcome show that it is a 

healthy and usual data and it can be processed to the next step. 

After doing some data preprocessing, the next step is to show the things that 

matter to the data and to optimize the model. 

Illustration 5.20. The count plot of 'outcome' data. 
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import time 
from sklearn.metrics import accuracy_score, roc_auc_score, 

plot_confusion_matrix, roc_curve, classification_report 
def run_model(model, X_train, y_train, X_test, y_test, verbose=True): 
    t0=time.time() 

    if verbose == False: 
        model.fit(X_train,y_train, verbose=0) 
    else: 
        model.fit(X_train,y_train) 

    y_pred = model.predict(X_test) 

    accuracy = accuracy_score(y_test, y_pred) 

    roc_auc = roc_auc_score(y_test, y_pred)  

    time_taken = time.time()-t0 

    print("Accuracy = {}".format(accuracy)) 
    print("ROC Area under Curve = {}".format(roc_auc)) 
    print("Time taken = {}".format(time_taken)) 
    print(classification_report(y_test,y_pred,digits=5)) 
     

    probs = model.predict_proba(X_test)   

    probs = probs[:, 1]   
    fper, tper, thresholds = roc_curve(y_test, probs)  

    plot_roc_cur(fper, tper) 

     

    plot_confusion_matrix(model, X_test, y_test,cmap=plt.cm.Blues, 

normalize = 'all') 
     

    return model, accuracy 

 
 

From line 1, import time is used to show the time used when training the 

data. The second line shows the way to import library from Sci-kit learn metrics to 

show accuracy score, etc. as it showed. Line 4-27 is to defines the run model to train 

the dataset. The main concern of this class is to show the accuracy, f-1 score, 

precision, recall, ROC curves, and confusion metrics from the data. Accuracy is the 

ratio of the number of correct predictions to the total number of input samples, with 

the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
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 To give the best output, evaluating the performance of a classification model 

is not stop in accuracy, but more. Precision, to show the proportion of relevant 

research (correctly predicted yes) in the list of all returned search result (total 

predicted yes). Recall, to show the ratio of the relevant results (correctly predicted 

yes) returned by the search engine to the total number of the relevant result could 

have ben returned (total actual yes). F1-score to show when there are imbalanced 

classes with the formula: 

𝐹1 =  
2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

With a note that the precision value and the recall value need to be large, and it will 

be the highest when P&R are equals to one. 

ROC (Receiver Operating Characteristic) curves used to visualize the 

performance of the binary classifier, the meaning classifier with two possible output 

classes, it plots two parameters: true positive rate/recall (TPR) with the formula:  

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

and the second one false positive rate (FPR) with formula: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
  

Where the TP is true positive, TN is true negative, FP is false positive and FN is 

False negative. ROC curves can be extended to problems with three or more class, 

and it is very useful even if the predicted probabilities are nor properly calibrated. 

And the confusion matrix is used to describe the performance of the 

classification model. This step was an important step to know the model 

evaluation to begin the logistic regression. After that, implement the Naïve Bayes 

using Sci-Kit learn library as the code below: 
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from sklearn.naive_bayes import GaussianNB 
NB =GaussianNB() 

NB, accuracy_NB = run_model(NB,train_x,train_y,valid_x,valid_y) 

 

 
 

In line 1, the Naïve Bayes algorithm was called from the library, then in line 

2, the Naïve Bayes was declared into NB variable. In line 3, to get the Naïve Bayes 

and the accuracy of the Naïve Bayes, the model is running with the parameters as 

it shows in the code. 

The Gaussian Naïve Bayes from the scikit library is done, move to logistic 

regression without a library, the code is below: 
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class LogisticRegression: 
    def __init__(self,lr=0.01,epochs=1000): 
        self.lr = lr 
        self.epochs = epochs 
        self.weights = None 
     

    def sigmoid(self,z): 
        return 1/(1+ np.e**(-z)) 
     

    def cost_function(self,X,y): 
        z = np.dot(X,self.weights) 
        predict1 = y*np.log(self.sigmoid(z)) 
        predict0 = (1 - y) * np.log(1 - self.sigmoid(z)) 
        return -sum(predict1 + predict0) / len(X) 
     

    def fit(self,X,y): 
        loss = [] 

        self.weights = np.random.rand(X.shape[1]) 
        n =len(X) 
         

        for i in range(self.epochs): 
            yhat = self.sigmoid(np.dot(X,self.weights)) 
            self.weights -= self.lr*np.dot(X.T,yhat-y)/n 
            loss.append(self.cost_function(X,y)) 
         

        self.weights = self.weights 
        self.loss = loss 
         

    def predict(self,X): 
        z = np.dot(X, self.weights) 
             

        return [1 if i > 0.5 else 0 for i in self.sigmoid(z)] 
 

def model_accuracy(preds,y_true): 
    ret = (preds == y_true) 

    return sum(ret)/len(preds) 

 
 

In class logistic regression there are some steps, in line 2-5 is used to make 

the variable global to declare, LR, the number of epochs, and declare the weights. 

The lines 7&8 show to define the sigmoid with the return value is decided 0 or 1. 
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Line 10-14 is to define the cost function using dot product between the matrix X 

and current weight, with the returned value is set not negative. Line 16-19 is to train 

the data using the old weight and random numbers, from line 21-24 performs the 

gradient descent to know the optimum gradient as explained in the previous chapter. 

Then, in line 26 & 27 is to renew the variables. In line 29, it shows the code to 

predict using the optimal data that got from the previous code. Then the last line 

34-36 is to check the accuracy of the models just like in the scikit library before. 

 To know this model is work efficiently, the mean squared error must be 

descending every iteration, so the coding below is to check the MSE. 
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xs = np.arange(len(model.loss)) 

ys = model.loss 

 

plt.plot(xs, ys, lw=3, c='#087E8B') 

plt.title('Loss per iteration (MSE)', size=20) 

plt.xlabel('Iteration', size=14) 

plt.ylabel('Loss', size=14) 

plt.show() 

 
 

Line 1&2 is to make a graph to show the model loss per iteration, line 4-8 is to set 

what the graph will conclude: Loss per iteration (define by Mean Squared 

Error/MSE), The sum of iteration that has been done, and Loss per iteration. 

The next step is to find the best learning rate by seeing loss in the model 

using different learning rate. Learning rate that used as sample here is 0.5, 0.1, 0.01, 

0.001, the code as follows:  
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1.losses = {} 

2.for lr in [0.5, 0.1, 0.01, 0.001]: 

3.    model = LogisticRegression(lr = lr) 

4.    model.fit(train_x, train_y) 

5.    losses[f'LR={str(lr)}'] = model.loss 

6.     

7.      

8.xs = np.arange(len(model.loss)) 

9. 

10.plt.plot(xs, losses['LR=0.5'], lw=3, label=f"LR = 0.5, Final = 

11.{losses['LR=0.5'][-1]:.2f}") 

12.plt.plot(xs, losses['LR=0.1'], lw=3, label=f"LR = 0.1, Final = 

13.{losses['LR=0.1'][-1]:.2f}") 

14.plt.plot(xs, losses['LR=0.01'], lw=3, label=f"LR = 0.01, Final = 

15.{losses['LR=0.01'][-1]:.2f}") 

16.plt.plot(xs, losses['LR=0.001'], lw=3, label=f"LR = 0.001, Final = 

17.{losses['LR=0.001'][-1]:.2f}") 

18.plt.title('Loss per iteration (MSE) for different learning rates', 

19.size=20) 

20.plt.xlabel('Iteration', size=14) 

21.plt.ylabel('Loss', size=14) 

22.plt.legend() 

23.plt.show()  

 

Line 1-5 is to the best learning rate using the MSE or loss per iteration, this line is 

showing the code to do looping between different learning rate. After that, line 10-

23 is to make the MSE graph with the different learning rate, the best learning rate 

will be used is the learning rate with the MSE descending. 

 

5.2 Testing 

This chapter will show that the code was run successfully and the output 

like what its expected. From the first Naïve Bayes algorithm with the library 

returned the output as the image below. 
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Illustration 5.21. ROC Curve from the dataset 

 

 

Illustration 5.22. Confusion matrix from the dataset 
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The ROC curve above is interpreting a good result of the test, it means that 

the model has works since the roc value of true positive rate is away from the 

diagonal. The confusion matrix also shows a good result for the model, from that 

when the Naïve Bayes using Sci-Kit learn implemented the accuracy is 0.77 as the 

result below. 

  

 

 

The Logistic regression without library is also tested. Before implement the 

algorithm, for the optimize and efficient model, the data evaluation must be done. 

First the MSE must be checked and it comes out as the images below. 

Illustration 5.23. The Accuracy Result of SciKit-Learn NB 
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Illustration 5.24. Mean Squared Errors of the model 

The MSE graph shows that the value is descending, it is a good point, 

because the more the iteration the lost become the minimal. After that, the most 

suitable learning rate must be found for the optimum logistic regression. Finding 

the best learning rate could be done by testing some value. It can be seen which one 

is the best learning rate by finding the minimal loss as the iteration bigger in the 

MSE. The graph is show below. 
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Illustration 5.25. MSE for the best learning rate 

 

From the image above, the best learning rate is 0.5 since the line is 

descending and has the lowest loss value per iteration, so the logistic regression 

can be implemented with the learning rate 0.5.  

 

  

 

 

Illustration 5.26. The Accuracy Result of LR Without Library 
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The accuracy of this algorithm is 0.763. To show the accuracy, the same 

code is used to check the accuracy of the Linear Regression using Scikit algorithm. 

This code is the translation of the formula accuracy that has been discussed before. 

 


