
11

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1. Implementation

This chapter five describes implementations and testing where the implementation would

discuss about the code and testing discuss about trial result of algorithm.

1. model2 = Sequential()

2. model2.add(Conv2D(32, (3, 3), activation='relu',

 input_shape=(200,200,3)))

3. model2.add(MaxPooling2D(pool_size=(2, 2)))

4. model2.add(Dropout(0.25))

5. model2.add(Conv2D(64, (3, 3), activation='relu'))

6. model2.add(MaxPooling2D(pool_size=(2, 2)))

7. model2.add(Dropout(0.25))

8. model2.add(Flatten())

9. model2.add(Dense(96, activation='relu'))

10. model2.add(Dropout(0.5))

11. model2.add(Dense(3, activation='softmax'))

12. model2.compile(loss='categorical_crossentropy', optimizer='SGD',

 metrics=['accuracy'])

As we see on the list above, first line means sequential model applied in this process of

this convolution. In the second line until line seven session is a process where the cnn work, and

there are several layers consisting of several layers such as convolution layer, pooling layer, and

dense layer.

12

1. epochs=75
2. batch_size=32
3.
4. history = model2.fit_generator(
5. train_generator,
6. epochs=epochs,
7. validation_data=validation_generator,
8. validation_steps=total_validate/batch_size,
9. steps_per_epoch=total_train/batch_size,
10.)

With using CNN we have to train the datasets that we collected and filtered like on the

previously code discussion. As we can see on the top is a code to train the processed dataset, on

the 1st line is epochs=75 that means 75 repetition. On the last line is a code to determine the

average results it got from training process.

1. predict = model.predict_generator(test_generator,
steps=np.ceil(total_test/batch_size))

2. test_df['category'] = np.argmax(predict, axis=1)

The code above is used to predict the final result from images that we want to predict.

13

5.2. Testing

After having such analysis and implementation, the researcer did some testing. Here

some testing from different optimizer that have done by the researcher.

We can see from the picture above is the result of the tada set that has been set the

brightness adjustment. After the brightness adjustment is complete, the next are some result from

the calculation of presision, recall, and accuracy of several optimizer that are compared :

Figure 5.3 Result Adam Optimizer

 Figure 5.2 Result Brightness Adjustment

14

Figure 5.4 Result RMSprop Optimizer

Figure 5.5 Result SGD Optimizer

15

As we can see the image above is the result of several experiments with 75 epoch using

the Adam, RMSprop, and SGD optimizer. From these results, we can see that the result obtained

by SGD optimizer are 93,75%, where the result the result obtained are the highest from other

optimizer. Adam get 92,5% accuracy, and the last RMSprop optimizer get 90% accuracy that is

not much different from Adam, because Adam is combine from RMSprop and momentum that

why result from Adam and RMSprop is not so far in difference

5.3. Diagram of analysis

This sub-chapter give the result from the testing that already done, from the 80 predicted

images, banana with ripeness level of green predicted as much as 23 images, ripe by 17, overripe

by 35, and 5 images predicted wrong. As we can see in the diagram below this project can get

results as shown in the diagram below. This diagram is for classification the ripeness of banana,

grey for overripe, orange for ripe, blue for green banana, and yelow for the incorrect.

Figure 5.6 Diagram Analysis Predict

