
19

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

This project uses Golang version 1.15.1 programming language; every 1 second, a

batch of data will be sent. This process is carried out for approximately 40 minutes. The

data sent is in the form of the time when the data was sent and a list of ticket codes that

have been made. Each data set sent will be received by each message broker. After the data

is received, the time to receive the data will be calculated and record the performance of

the CPU and memory used during the process.

The first thing to do before implementing is to determine how long the program

will last. The next thing is to determine how much data to send. Moreover, the last step is

to determine the interval the data is sent. The code below shows the time taken during

implementation, the amount of data sent during implementation and the time interval for

sending the data. The following code snippet is owned Publish code.

68. var dataAmount int

69. runTime := 40 * time.Minute

70. intervalTime := 1 * time.Second

71. fmt.Println("Input Batch Data :")

72. fmt.Scanln(&dataAmount)

The next thing that needs to be done after determining the length of the

program running, the amount of data sent, and the time interval in sending the data

is to generate data. The data generated from the process is a ticket code. After

getting the ticket code data, the next thing to do is save time. This time, which will

be stored later, will be a reference for calculating the time required during the data

transmission process. Next, another thing that needs to be saved is the ticket code.

When the system has received the time data and ticket code, the next thing is to

enter the data into a struct to be sent to the message broker.

 20

88. kodeTiket:=fmt.Sprintf("TIKET”+timecreate+"+"+"%06d",i)

Above is the code used to create the ticket code on Publish code. The ticket code

format was made using when the ticket was created and ended with a counter number. This

process is done so that every ticket code generated will always be unique.

After the ticket code generation has been completed, the ticket code will be sent

using a message broker. It will be inputted into the database simultaneously. This process

can be done because the message broker process is asynchronous, which makes both

processes run. This process is carried out to reduce response time so that visitors do not

need to wait until the data entry process into the database is completed first.

 After the data is sent through the message broker, the system will calculate

the performance performed when the message sending process occurs. The calculated

performance includes CPU usage, memory usage, and latency. Here is the code to calculate

the performance on RabbitMQ Consumer code.

78. timecreate, _ := time.Parse("2006-01-02 15:04:05.000000 MST",

data.TimeCreate)

79. memory, _ := mem.VirtualMemory()

80. cpu, _ := cpu.Percent(time.Second, false)

81. memoryUsage := int(math.Ceil(memory.UsedPercent))

82. cpuUsage := int(math.Ceil(cpu[0]))

 The value of CPU usage and memory usage can be directly determined, but not for

latency. The way to measure the speed of the latency is to compare when the data is sent

and when the data is received. In order to see the difference in latency between the two

message brokers, the unit of time to measure latency uses milliseconds..

 21

 After getting the three values of CPU usage, memory usage, and latency, the next

thing to do is save the data into the database. The database used in this message broker is a

different database from that used by the data sender. So that the message broker's database

can be used as a backup in the event of a failure to insert the database on the main system,

this also proves that message brokers can be used on microservices systems, where

microservices have many different databases for each service.

 22

5.2 Testing

The testing that has been done in this research is carried out on each message

broker based on each amount of data sent. This test is run for 40 minutes on each

message broker and category of the amount of data sent. The data from this study

are the average data latency, CPU usage, and memory usage on Redis and

RabbitMQ.

1. Latency

The diagram below shows the average latency (ms) performed by Redis.

The latency speed is influenced by the amount of data sent at one time. In the

diagram below, the average Redis latency for 100 data, 1000 data, and 10000 data

has a high difference in average latency..

Figure 5.2 : Diagram Average Latency Redis (ms)

0

500

1000

1500

2000

2500

1 100 1000 10000

 23

The diagram below shows the average latency (ms) performed by

RabbitMQ. Similar to Redis, the average latency speed is also affected by the

amount of data sent at one time. In addition, the difference in average latency

between the number of data has a high graph increase just like Redis' graph.

Figure 5.2 : Diagram Average Latency RabbitMQ (ms)

 Below is a comparison table of the latency speed between the use of Redis

and RabbitMQ message brokers. Redis and RabbitMQ perform nearly the same in

terms of latency. Then the data that is sent increases, the comparison of latency

speed performance is almost the same. It can be concluded that the use of Redis in

terms of latency will be more suitable when the amount of data sent is small. At the

same time, RabbitMQ will be more suitable when the amount of data sent is quite

large.

Table 5.2: Table Average Latency (ms)

Result Average Latency (ms)

Redis_1 2.27817015

Redis_100 4.51092833

Redis_1000 1163.00354

Redis_10000 2284.53528

Rabbit_1 2.61295083

Rabbit_100 5.72802958

Rabbit_1000 1173.74358

Rabbit_10000 2262.96858

0

500

1000

1500

2000

2500

1 100 1000 10000

 24

2. CPU Usage

Below is a diagram of the average CPU usage results using Redis. From the

diagram, it can be seen that the amount of data sent also affects CPU performance. The

difference in CPU performance is quite significant when the data sent is above 1000 data

per second..

Figure 5.2 : Diagram Average Redis CPU Usage (%)

Below is a diagram of the average CPU usage using RabbitMQ. The use of CPU

usage on RabbitMQ with fewer data requires higher performance than RabbitMQ.

However, if the data used is more than 1000, RabbitMQ will be more efficient than Redis.

Figure 5.2 : Diagram Average RabbitMQ CPU Usage (%)

0

5

10

15

20

25

30

35

40

45

1 100 1000 10000

0

5

10

15

20

25

30

35

40

1 100 1000 10000

 25

The difference in CPU usage between Redis and RabbitMQ can be seen in

this table. Redis will use fewer CPU resources compared to RabbitMQ when the

data transmitted is small. However, Redis will consume more resources than

RabbitMQ if a large amount of power is sent.

Table 5.2: Table Average CPU Usage (%)

Result Average CPU Usage (%)

Redis_1 1.52508361

Redis_100 3.22240803

Redis_1000 14.3681319

Redis_10000 38.3333333

Rabbit_1 2.35460993

Rabbit_100 4.06199461

Rabbit_1000 13.4197531

Rabbit_10000 37.5

3. Memory Usage

The results of memory usage on Redis can be seen below. The difference in

Redis memory usage between under 100 data is not significant. However, when the

data sent is more than 1000 data, there will be a fairly high increase in memory..

Figure 5.2 : Diagram Average Redis Memory Usage (%)

 26

RabbitMQ memory usage can be seen in the diagram below. The increase in

the RabbitMQ memory usage diagram looks quite stable. However, there is a slight

spike when the data sent is 10000 data per second.

Figure 5.2 : Diagram Average RabbitMQ Memory Usage (%)

Below is the memory usage of two message brokers. RabbitMQ has more

stable diagrams compared to Redis. However, Redis is more efficient than

RabbitMQ when the data sent is small. In this case, we can see that Redis is more

suitable when transmitting small amounts of data, and RabbitMQ is more stable at

sending large amounts of data..

Table 5.2: Table Average Memory Usage (%)

Result Average Memory Usage (%)

Redis_1 85.0568562

Redis_100 86.0685619

Redis_1000 90

Redis_10000 92.2930822

Rabbit_1 88.2907801

Rabbit_100 89

Rabbit_1000 89.9183402

Rabbit_10000 91.7412983

86

87

88

89

90

91

92

93

1 100 1000 10000

 27

From the experimental results above, we get some comparison results. The

results of this comparison can be seen in the table below. The table below shows

which message broker is better in each test carried out based on each performance

area being compared.

Table 5.2: Table Comparison Each Performance

Amount

Data

CPU Memory Latency

Redis RabbitMQ Redis RabbitMQ Redis RabbitMQ

1 v - v - v -

100 v - v - v -

1000 - v - v v -

10000 - v - v - v

	COVER
	HALAMAN PENGESAHAN
	DECLARATION OF AUTHORSHIP
	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1. Literature Study
	3.2. Dataset
	3.3. Programs
	3.4. Implementation and analysis

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Design

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Appendix
	PLAGIARISM CHECK

