
9

CHAPTER 4

ANALYSIS AND DESIGN

4.1 Analysis

This project aims to analyze and compare the message broker performance

results on the E-Ticketing System. This project focuses on speeding up the process

of sending ticket data. When a visitor has completed a transaction on the E-

Ticketing System, the system will process the payment in general. It will give the

visitor a ticket code. Visitors will later use the ticket code to enter the tourist

attractions that have been targeted. The ticket code will be unique and will be

automatically generated immediately after the payment has been successful. After

the ticket code has been generated, the ticket code will be stored in the database and

recorded as a used ticket code. This process will take a long time because each

process must wait until the previous process has been completed. This process will

make the response time long, and if the process lasts too long, it can make visitors

lose their patience. One thing that can overcome this is to use a message broker.

The message broker is capable of sending data without having to wait for the

previous process to complete. This process is because the message broker works

asynchronously, which is a condition where processes can run simultaneously. What

message brokers can do on the E-Ticketing System is to send the ticket code that has just

been created to visitors, along with the process of entering data into the database. This

process can speed up response time so that visitors immediately receive a ticket code that

has been generated previously.

 10

This project aims to analyze and compare the message broker's data delivery

performance on the E-Ticketing System. Each of the message brokers will calculate the

latency of receiving data based on the time the data is sent. The data stored in the database

include data delivery speed (in milliseconds), the amount of data sent in one unit of time,

CPU usage and memory usage. The data will be stored using the PostgreSQL.

Figure 4.1: Projek Design Database

Above is the design of the project's database. The database has several columns

such as id, kodetiket, created_at, sendat, jumlahbatch and ms. Kodetiket is a column to

store the ticket code that the system has generated. Created_at is used to store the time

when the system created the ticket. Sendat is used to store the name of the message broker

the message is Sent. Jumlahbatch is used to store the amount of data sent at one time. Ms

is used to calculate latency when entering ticket code data into the database.

 11

Later the ms column in this database will be used to prove the importance of using

the broker process in the E-Ticketing System. The speed of latency in entering data into

the database will affect the user's response time. By using a message broker, the system can

respond to a ticket code without having to wait until the insert process into the database is

complete.

Figure 4.1 : Redis Design Database

Above is the design of the Redis database. The database design in question is the

database design to accommodate the data received by Redis. The type of database used is

Postgresql version 13.0. This database has columns id, kodetiket, created_at, ms, CPU,

memory, and batch count. Kodetiket is used to store ticket data that Redis have received.

Created_at is when the data has been received by Redis and will be stored in the database.

Ms is used to store the latency speed (ms) of receiving data from the publisher. CPU is used

to save CPU usage when consuming data. Memory is used to save memory usage when the

process of using the message broker. Jumlahbatch is used to classify data based on the

amount of data sent at one time.

 12

Figure 4.1 : Rabbit Design Database

Above is Rabbit's database design. Rabbit's database design is the same as Redis' database.

The use of each column also has the same thing as kodetiket used to store the sent ticket

code, ms to record the latency (ms) of data transmission, CPU to store CPU performance,

memory to deviate memory performance, and jumlahbatch used to classify data based on

the amount of data that sent in one time.

 To prove that message brokers can be used in different databases, in this study, each

message broker will use a different database to store data.. Created_at is used to store when

the program created the data. The ticket code is used to store the ticket code sent by the

sender. Ms is a column to store latency in ms. CPU is a column to store CPU Usage in %

units. Memory is a column to store Memory Usage in % units. The number of batches is to

store how much data is sent in one unit of time. The batch count is also very useful to make

it easier to measure the average value based on the amount of data sent.

 13

Figure 4.1 : E-Ticketing Sample Flowchart

Below is a simple E-Ticketing System flowchart diagram without using a message

broker. When the system receives a request, the system will generate a ticket code or

booking code. After that, the code will be stored in the database. After the code saving

process is complete, the system will send the code to the customer.

Systems with such a process flowchart above have some drawbacks. One

disadvantage of this system is when the system is getting a lot of requests, and it will lead

the process of data storage into the database will belong. This issue causes the acceptable

response time will take some time because the process of delivery of ticket code must wait

until the data storage process is completed.

 14

Figure 4.1 : E-Ticketing Sample Worst Case Flowchart

The other drawback is that when the data insertion process fails, the next process

will stop, making visitors repeat the transaction process. If this happens to tourist attractions

that have high visitor traffic, it will cause long queues of visitors. One alternative way to

overcome this is to use a message broker.

 15

Figure 4.1 : E-Ticketing System with Message Broker

Message brokers can overcome both problems mentioned above. The first problem

is performance. With the message broker's asynchronous performance, the message broker

can solve this problem by sending a ticket code generated without having to wait for the

code saving process to complete. This difference will be seen in the amount of data sent at

one time, where it takes a long time to store the data in the database.

 16

For example, below is the result of the latency performance of entering data into

the database. These results are obtained by testing the Postgres database to store data for a

certain period and with a certain amount of data. When the database inserts many data, the

process will take a long time, and from the table below, there is a high latency difference

between 1000 data and 10000 data.

Table 4.1: Table Average Insert Latency (ms)

Data Amount Average Latency (ms)

1 1.2848537

100 4.58617131

1000 55.2547529

10000 2562.2

Therefore, a message broker is needed so that the data transmission process does

not have to wait until the saving process is completed first. The message broker will split

the process and send the data. The use of message brokers can reduce the response time of

a process.

In addition, the message broker can also overcome cases when the process of

storing data fails. When the database fails when saving data, the message broker can save

the data into memory and trying to save the data again when the database is available.

 17

4.2 Design

Figure 4.2 : Flowchart Process

Above is a flowchart of how this program process takes place. The first is to input

the request. The intended request is the amount of data that will be sent per unit of time.

Variations in the amount of time used in this testing there are 4 types, namely 1, 100, 1000,

 18

and 10000 data. Then the system will generate data in the form of a unique ticket code.

Then the data will be entered into the Postgresql database that has been provided. Then the

data will be sent via message broker. The message broker will send the data without having

to wait for the process of entering data into the database to complete. Then the data will be

sent via one of the message brokers that have been determined.

After the data is received by the message broker, the system will perform a

performance calculation. Performance that will be calculated is CPU usage, Memory, and

latency during delivery. The calculated data will then be stored in the database.

	COVER
	HALAMAN PENGESAHAN
	DECLARATION OF AUTHORSHIP
	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1. Literature Study
	3.2. Dataset
	3.3. Programs
	3.4. Implementation and analysis

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Design

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Appendix
	PLAGIARISM CHECK

