
13

IMPLEMENTATION AND TESTING

5.1 Implementation

This project is implemented using Javascript (React Native). In this chapter,

we will discuss about how the program works.

a. Fetch Data

1. _getData = () => {
2. let mToken = this.props.user.token
3. let mUrl = ApiConstants.GetPedagang
4. ApiMiddleware(mUrl, null, 'GET', mToken)
5. .then((json) => {
6. if(json.status == 200) {
7. let mResult = json.res.result == null ? [] :

json.res.result
8. this.setState({
9. dataPedagang: [...mResult]
10. })
11. }
12. else {
13. alert(JSON.stringify(json))
14. }
15. })
16. }

The code above shows the process of fetch the data from API. When json

response is 200 then the data is successfully fetched. In line 6, when json status is

200, the response json.status.result will store in variable called mResult that have a

conditional, when the response is not empty the data will be json.status.result and

when the data is empty, mResult will contain empty array. After the data

successfully fetched, mResult will be assign to local state called dataPedagang in

line 8.

14

14

b. Processing data using ScrollView with Array.Map()

1. <ScrollView>
2. { dataPedagang.map((o) =>(
3. <TouchableOpacity
4. onPress={()=>this._getTagihan(o.idpedagangkios) }
5. >
6. <View style={{flexDirection: 'row',

 justifyContent:'space-between' }}>
7. <Text text={ o.noreg } />
8. <Text text={ o.noseri } />
9. </View>
10. <View style={{ flexDirection: 'row',

 justifyContent:'space-between' }}>
11. <Text text={ o.namapedagang } />
12. <Text text={ o.namacorporate } />
13. </View>
14. </TouchableOpacity>
15.))
16. }
17. </ScrollView>

The code above shows how to process the data by using ScrollView. We

call state called dataPedagang and use map() to looping the data. As we

can see, the data that we will display are noreg, noseri, namapedagang,

namacorporate. Since it’s using map() which result an array, we should

call the object using parameter ‘o’ from what we have declared in line

2. In line 4, onPress is a prop that contains a function if there is an action

from the user. In the onPress above, if there is an action from the user, it

will run the _getBill(o.idpedagangkios) function by bringing the

idpedagankios data obtained from the mapped data.

15

15

c. Processing data using ScrollView with Lodash

1. <ScrollView>
2. { _.map(dataPedagang, (o) =>(
3. <TouchableOpacity
4. style={{
5. width: metrics.screenWidth,
6. borderTopWidth: 1,
7. borderColor: '#EEEEEE',
8. paddingHorizontal: 10,
9. paddingVertical: 20
10. }}
11. onPress={ () => this._getTagihan(o.idpedagangkios) }
12. >
13. <View style={{ flexDirection: 'row', justifyContent:

'space-between' }}>
14. <Text text={ o.noreg } />
15. <Text text={ o.noseri } />
16. </View>

17. <View style={{ flexDirection: 'row', justifyContent:

'space-between' }}>
18. <Text text={ o.namapedagang } />
19. <Text text={ o.namacorporate } />
20. </View>
21. </TouchableOpacity>
22.))
23. }
24. </ScrollView>

Structurally it is similar to ScrollView with Array.Map(). However, when it

comes to processing data, Lodash has an easier way, namely by directly calling the

data to be processed. As can be seen in line 2 where Lodash uses the '_' command

then followed by '.map' which is functionally the same as Array.Map(). Just like

Array.Map(), to loop through data requires a variable. The variable used is the same

as Array.Map(), namely the 'o' variable which can be replaced according to taste

such as 'id' or 'index'.

16

16

d. Processing data using FlatList

1. <FlatList
2. data={ dataPedagang ? dataPedagang : [] }
3. keyExtractor={ this._keyExtractor }
4. renderItem={ ({ item }) =>
5. <ListData noreg={ item.noreg }
6. noseri={ item.noseri }
7. namapedagang={ item.namapedagang }
8. namacorporate={ item.namacorporate }
9. noregFunction={()=>
10. this._getTagihan(item.idpedagangkios) }/>
11. }
12. initialNumToRender={ 10 }
13. />
14.
15. _keyExtractor = (item, index) => index.toString()
16.
17. const ListData = (props) => {
18. return(
19. <TouchableOpacity
20. onPress={ props.noregFunction }
21. >
22.
23. <View>
24. <Text text={ props.noreg } />
25. <Text text={ props.noseri } />
26. </View>
27.
28. <View>
29. <Text text={ props.namapedagang } />
30. <Text text={ props.namacorporate } />
31. </View>
32. </TouchableOpacity>
33.)
34. }

This is how FlatList implemented. In line 2, we must fill the data props to

display the data, so we fill with dataPedagang. RenderItem in line 4 is the item that

we want to render and show to user. The renderItem works similar with map()

which using parameter to call the object. On line12, InitialNumToRender is a useful

prop to limit the data that appears when the FlatList first appears. In the above code,

17

17

InitialNumToRender is set to 10, and also the default InitialNumToRender on

FlatList is 10 items.

e. Processing data using FlatList Pagination

We can optimize & customize FlatList for optimal & better performance, so

we will use pagination with FlatList. But, for pagination we need sent something to

API to provide the data that we need. For this case, we will send traders name

keyword to API and the result that API provide is all traders with contain the

keyword. The pagination system in FlatList is if there is 1 limit that contains 10

data and it reaches the end, then the offset will be added by 1, where the number of

limits becomes 20.

1. _getData = () => {
2. let offset = this.state.offset //1
3. let limit = this.state.limit //10
4. let search = this.state.search //''
5. let mToken = this.props.user.token
6. let mUrl = ApiConstants.GetPedagangLimit + '/' + ((offset-

1)*limit) + '/' + limit + '/' + 0 + '/' + search

7. ApiMiddleware(mUrl, null, 'GET', mToken)
8. .then((json) => {
9. if(json.status == 200) {
10. let mResult = json.res.result == null ? [] :
 json.res.result

11. this.setState({
12. dataPedagang: [...this.state.dataPeda
 gang, ...mResult]

13. })
14. }
15. else {
16. if(offset == 1){
17. Alert.alert('Peringatan!', 'Terjadi kesalahan.

mohon diulang kembali')
18. }
19. else{
20. this.setState({
21. searchMore: false
22. })
23. }

18

18

24. }
25. })
26. }

This is the function code for fetch data, for the API, we need to send offset,

limit, and search which is keyword. In Line 12, we need to reassign dataPedagang

state so that it is not replaced by upcoming data. Then we need to create a function,

where when the data reached the end it will add more data. On line 16 it will be

checked whether the offset is 0 or something else. If the first time the function is

executed and the offset is 1, then the data cannot be obtained, or an error occurs

“Peringatan! Terjadi kesalahan. Mohon diulang kembali”.

19

19

1. _searchFilter = (search) => {
2. this.setState({
3. search: search
4. }, () => {
5. if (this.state.search.length > 3)
6. this._getData()
7. this._checkSession()
8. })
9. }

The function above is a function to send keywords to the server. In line 1, the

search parameter is obtained through user input which will be passed to this

function. In line 5, it will check whether the number of keyword characters is more

than 3 characters or not. If the number of characters is more than 3, the _getData()

and _checkSession() functions will be executed.

1. _checkSession = () => {
2. let mUrl = ApiConstants.SessionCheck
3. let mToken = this.props.user.token
4. ApiMiddleware(mUrl, null, 'GET', mToken)
5. .then((json) => {
6. if(json.status == 401){
7. Alert.alert('Peringatan!', 'Sesi anda habis. Silahkan

masuk kembali')
8. this.props.onSetAlertLogout(true)
9. }else{
10. }
11. }).catch((err) => {
12. Alert.alert('Peringatan!', 'Sesi anda habis. Silahkan

masuk kembali')
13. this.props.onSetAlertLogout(true)
14. })
15. }

This function is used to check the session of the user before fetching data

from the API. If json.status is 401 as in line 6, a warning will appear “Warning!

Your session has expired. Please log back in” and the user is forced to log out and

20

20

log back in. This is done so that the security of the application is maintained by

other parties.

In line 2, mUrl contains the API url of the back-end which is called through

the ApiConstants file with the variable name SessionCheck. So the way to call it is

ApiConstans.SessionCheck.

In line 3, mToken contains the user token which is obtained from the time

the user login to the device. This token is in the form of JWT or JSON Web Token

which will later be sent to the back-end and then checked whether this token is still

valid or not.

21

21

Figure 5.1. FlatList Pagination Process

This is the flowchart of how FlatList with pagination system will be work. After

inputting a keyword for example, ‘Ketut’. The keyword will be sent to API to

check-in database, whether the data is valid or not. If valid, then the data will be

retrieved and then stored in the local state of React Native. The stored data before

will be processed with FlatList pagination, and when reach end of data FlatList

pagination will call a function to check is there still data available for processing.

If there is still data available, the data retrieval process will be carried out again and

then added to the previously stored data with the limits and offsets that have been

added.

22

22

1. _loadMore = () => {
2. this.setState(
3. (prevState) => ({
4. offset: prevState.offset + 1,
5. }),
6. () => {
7. if (this.state.searchMore == true) this._getData()
8. }
9.)

 10.}

This is the function code when FlatList item reach the end, and this function

will be called to fetch more data if available. In line 3, data is added where

prevState is a pre-existing data variable whose offset is added by 1, and if the

searchMore variable is true, the _getData() function will be performed which is

a function to check and retrieve data from the API.

1. <FlatList
2. data={ dataPedagang ? dataPedagang : [] }
3. keyExtractor={ this._keyExtractor }
4. renderItem={ ({ item }) => <ListData noreg={ item.noreg }

noseri={ item.noseri } namapedagang={ item.namapedagang }
namacorporate={ item.namacorporate } noregFunction={ () =>
this._getTagihan(item.idpedagangkios) }/> }

5. onEndReached={ this._loadMore }
6. />
7. _keyExtractor = (item, index) => index.toString()
8. const ListData = (props) => {
9. return(
10. <TouchableOpacity
11. style={{
12. width: metrics.screenWidth,
13. borderTopWidth: 1,
14. borderColor: '#EEEEEE',
15. paddingHorizontal: 10,
16. paddingVertical: 20
17. }}
18. onPress={ props.noregFunction }
19. >
20. <View style={{ flexDirection: 'row', justifyContent:

'space-between' }}>
21. <Text text={ props.noreg } />
22. <Text text={ props.noseri } />
23. </View>
24. <View style={{ flexDirection: 'row', justifyContent:

'space-between' }}>

23

23

25. <Text text={ props.namapedagang } />
26. <Text text={ props.namacorporate } />
27. </View>
28. </TouchableOpacity>
29.)
30. }

This is the FlatList Pagination code. In Line 2, the data will be checked

whether it exists or not, if the dataPedagang is empty then it will be filled by an

empty array and if the data is not empty it will be filled with dataPedagang. In Line

5, onEndReached is props that call loadMore function to load more data. In Line 4,

renderItem is used by calling the created custom component named ListData.

Components in ListData that will display the data on the screen, and how to pass

data from ListData to FlatList using props and on FlatList will be called with the

example props.noseri={item.noseri}. This is done to make the code look neater,

reusable, and can optimize the performance of FlatList because not everything is

processed in FlatList but through custom components and functions that have been

created previously.

5.2 Testing

For the test, hardware that will be used is Sunmi POS (Point of Sale) P1 4G

with the following specification:

• RAM: 1GB

• Storage: 8GB

• Android version: 6.0

The programming language to be used is Javascript (React Native), for testing

tool is using Google Chrome Debugger. All tests were carried out with 100% battery

condition. Sunmi P1 has the ability up to 60 fps.

24

24

1. ScrollView with Array.Map() Test

Table 5.1 : ScrollView Array Map Test

Load
Time

UI FPS JS FPS Frame
Drop

GPU
Process

Network
Process

83 second 5 FPS 4 FPS 2786 Frame HIGH 357.42 ms

Due to the long load time, the test is carried out for 2 minutes. From the data

test above, we know that ScrollView load time is bad, less UI & JS FPS, more frame

drops, and high GPU process. For the network process, ScrollView with

Array.Map() can complete in 357.42 ms. In this test, ScrollView will fetch the data

first from API and store it into local store in React Native. Data in ScrollView takes

up to 83 seconds to display all data at once on the screen. And if users scroll down,

there will be a decrease in fps, an increasing frame drop, the display will look

broken and cause lag. The drop frame generated in this test will increase as the test

progresses and it is possible to arrive at the last data scroll. Frame drop on Scroll

View with Array.Map() is very bad for user experience in using this application or

program. UI FPS (Main Thread) and JS FPS (Javascript Thread) on the ScrollView

test with Array.Map() are also fairly bad where UI FPS gets 5 FPS while in JS FPS

it gets 4 FPS. Because React Native is a native mobile development framework, so

many processes use GPU processes instead of CPUs. Therefore, the GPU usage on

a ScrollView with Array.Map() is fairly high and has an impact on the performance

of the application.

25

25

Figure 5.2. ScrollView Array.Map() test Network Process

ScrollView with Array.Map() requires a total time of up to 357.42 ms, where

data can be obtained in 269.25 ms which is quite fast. The Waiting section or TTFB

stands for Time To First Byte is the time it takes the server to prepare a response to

be sent. At this point, Array.Map() takes about 47.29 ms and is pretty good. In the

connection section starting a ScrollView with Array.Map() also gets good results

where it is stalled or the time the request spends waiting before it can be sent. This

time includes time spent negotiating network proxies. In the initial connection

section, you get 11.08 ms where the initial connection is the time it takes to connect

to the internet and the resulting time is fairly fast. The downloaded content is in the

form of JSON which is about 900 KB in size from the API which contains 900-

2000 data.

26

26

Figure 5.3. ScrollView Array.Map() test snapshot

We can see from the snapshot above, that ScrollView Array Map uses more

GPU power, and the JS Heap is high. From 2 minutes test, the heap still high and

makes FPS is quite bad & more frame drops. ScrollView uses the GPU process and

minimally uses the CPU process, therefore from the above results it can be seen that

27

27

the GPU usage is high while the CPU process graph is low. The CPU usage process

can be seen in the orange graph and on the summary tab it can be seen that it was a

scripting process that took 2430ms or 2.43 seconds. The event listener is high in the

beginning because it calls the function to fetch data only once and the data will be

stored and then displayed all directly. The heap at first looks small and as time goes

on, the heap increases and this indicates that there is a fps drop and abnormal GPU

usage in the running application or program. In testing ScrollView using

Array.Map() for 2 minutes, the heap has reached 13.2 MB -23.5 MB which is quite

large for a memory leak.

2. ScrollView with Lodash test

Table 5.2 : ScrollView with Lodash test
Load Time UI FPS JS FPS Frame

Drop
GPU
Process

Network
Process

80 Second 5 FPS 8 FPS 1924 HIGH 376.37 ms

Same with using Array.Map(), ScrollView with Lodash load time still slow

with 80 second, and the UI FPS & JS FPS are not much different from before, the

frame drops are less than using Array Map but GPU Process still high. ScrollView

with Lodash network process can complete in 376.37 ms which slower than

ScrollView Array.Map() test. The UI FPS and JS FPS sections are still pretty bad

though slightly higher than the results on the ScrollView test with Array.Map(). The

resulting Drop Frame also decreases which results in the number 1924, but it is

possible that the number will increase, the same as in a ScrollView with

Array.Map(). The process of using GPU in testing here is still the same as before

which is still high and will have a bad impact on users of this application later.

However, the total network process lost compared to the network process results

generated by ScrollView with Array.Map() which got a total time of 357.42 ms.

28

28

Figure 5.4. ScrollView with Lodash Network Process

In the results of the network process above, ScrollView with Lodash takes

a total of 376.37 ms or about 37 seconds to complete all processes. The server

prepares the response for 55.92 ms and the data is successfully retrieved within

280.46 ms or for 28 seconds, and the data can be saved and then displayed on the

ScrollView. Compared to ScrollView Array.Map(), ScrollView with Lodash gives

longer total network results. Initial Connection generated is quite good when

compared to ScrollView with Array.Map() with a time of 10.21 ms.

The resulting waiting time is also longer than the results obtained by

ScrollView with Array.Map() with 47.29 ms. However, the Request Sent time on a

ScrollView with Lodash is better where it gets a time of 41 nanoseconds.

29

29

Table 5.3 : Total Network Process time comparison between ScrollView with

Array.Map() and ScrollView with Lodash

ScrollView with Array.Map() ScrollView with Lodash

357.42 ms 376.37 ms

In the table above, it can be seen that ScrollView with Array.Map() gets a

better total time than ScrollView with Lodash. The difference between the two is

18.95 ms. In the Waiting section, ScrollView with Array.Map() also got a better

total time at 47.29 ms while ScrollView with Lodash got 55.92 ms. Above is a

discussion of the network process between ScrollView with Array.Map() and Scroll

The conclusion is that ScrollView with Array.Map() in the Network Process

section is superior to ScrollView with Lodash. However, it is possible that in other

tests, the results obtained by ScrollView with Lodash can be better than ScrollView

with Array.Map() in certain conditions.

30

30

Figure 5.5. ScrollView Lodash test snapshot

From the snapshot above, we notice that ScrollView with Lodash displays

a slightly better heap than Array Map. GPU process still high in this test. This test

was carried out for 2 minutes, because ScrollView has a load time of 80 seconds.

In the Summary section, it can be seen that the scripting process was carried out for

31

31

6298 ms or about 6 seconds and 1ms was used for rendering. The results on the

snapshot can be seen that the GPU usage is still high similar to ScrollView with

Array.Map(). The heap generated by ScrollView with Lodash is a bit smaller but

still, it affects the user experience in using the application. Applications with high

heap and GPU usage will feel heavy and broken when there is interaction from the

user and the bad thing can be a force close on the application due to drastically

decreased performance and no more available resources on the system.

3. FlatList test

Now we will test by using FlatList without any customize and we can see
the results below.

Table 5.4 : FlatList test

Load
Time

UI FPS JS FPS Frame
Drop

GPU
Process

Network Process

2 Second 58 FPS 56 FPS 229 NORMAL 361.00 ms

Load time on the FlatList is very fast, with 2 seconds and the data can be

displayed. UI FPS & JS FPS result are good, which is almost 60 FPS. GPU process

by using FlatList is normal and not too high like a ScrollView which means FlatList

is indeed good in performance in loading data on a large scale. Load time yang

cepat pada FlatList sangat membantu dalam mengoptimalkan kinerja React Native

dan pengalaman user dalam menggunakan aplikasi tersebut juga merasa nyaman.

Bagian UI FPS dan JS FPS mendapatkan angka 58 FPS pada UI FPS dan 56 FPS

pada JS FPS dan tidak menutup kemungkinan dapat mendapatkan 60 FPS baik pada

UI FPS maupun JS FPS. Frame Drop pada FlatList terbilang rendah, dan bisa dilihat

pada hasil pengetesan didapatkan bahwa FlatList mendapatkan 229 Frame Drop.

Hasil yang diberikan bisa terbilang bagus dan tidak terlalu mengganggu pengguna

32

32

saat menggunakan aplikasi tersebut. Penggunaan GPU pada FlatList juga terbilang

normal sehingga performa aplikasi tetap stabil dan terjaga.

In network process section, FlatList need 361.00 ms to complete the request

and displayed the data.

Figure 5.5: FlatList Network Process

The FlatList in this section takes up to 361.00 ms or 0.361 seconds to

complete the process. In the Waiting section, it can be seen that the time it takes for

the server to prepare a response is 45.92 ms and the data is successfully retrieved

within 276.50 ms or 0.2765 seconds. The total time that FlatList takes is quite a bit

longer compared to the total time it takes ScrollView with Array.Map(). On the

33

33

Network Process, FlatList gets an Initial Connection time of 11.54 ms. Requests are

sent in a short time, with 42 nanoseconds.

Table 5.5 : Total Network Process time comparison between ScrollView and FlatList

ScrollView Array.Map() FlatList
357.42 ms 361.00 ms

It can be seen in the table above if the difference in total time between

ScrollView and FlatList is not too far. But ScrollView is still superior here by a

difference of 3.58 ms. Even so, when displaying data FlatList is still better than

ScrollView which takes a long time to display data.

34

34

Figure 5.6. FlatList test snapshot

From the snapshot above, we can see that FlatList have a better performance

than ScrollView. GPU process in FlatList is normal and not high as ScrollView.

FlatList load time is fast with 2 second and data can be displayed to user. The heap

35

35

high at first, and low after a few moments. The CPU process graph in the FlatList

test is fairly good and not high, so FlatList can run well when the data is displayed

and there is interaction with the user when scrolling the list. In the Summary section

below, it can also be seen that with a total time of 60177 ms or 1 minute, the

scripting process (Javascript process) only takes 2110 ms or 2.11 seconds and the

data is already displayed on the Sunmi P1 screen and is ready to be used.

4. FlatList Pagination Test

In this test, we will use ‘KETUT’ as the keyword, that we will send to API

to fetch the data of Banjar market traders with contain name Ketut. And here is the

result below.

Table 5.6 : FlatList Pagination Test

Load Time UI FPS JS FPS Frame Drop GPU Process Network Process

1 second 60 56 77 NORMAL 68.21 ms

 The test was carried out for 1 minute and it was found that the FlatList

pagination can load data in 1 second and the data can be displayed. UI FPS & JS

FPS results in this test are very good, where FlatList can display data with good fps

and few frame drops. GPU process is normal, same as FlatList in standard mode

because FlatList can optimize performance & memory usage. FlatList with

pagination can complete in 68.21 ms to display all data in page 1.

36

36

Figure 5.7. FlatList Pagination Network Process

FlatList with pagination system only takes a total of 68.21 ms which is very

fast. In the Waiting section, where the server prepares a response, it takes 14.29 ms

due to sending parameters and checking data on the server. However, the data was

obtained in a short time of 0.71 ms. Compared to regular FlatList, FlatList with

pagination system gets much better results.

Table 5.7 : Total Network Process time comparison between FlatList and FlatList
Pagination

FlatList FlatList Pagination
361.00 ms 68.21 ms

It can be seen that the result of FlatList Pagination is much better than

normal FlatList. This is very influential on the application's network traffic, which

37

37

can save network bandwidth. The results of FlatList Pagination can be better

because FlatList Pagination sends keywords to the server which will later be

checked by the server, and that's why the Waiting part of FlatList Pagination takes

14.29 ms. After the keywords are sent and checked, the data will be sent by the

server according to the amount of valid data with the keywords that have been sent.

For example, the keyword sent is 'Ketut' then the server will check in the database

whether a trader with a name that includes 'Ketut' exists or not. If there is, then all

data containing the keyword 'Ketut' is 356, then 356 data will be sent back to React

Native.

But with this FlatList Pagination, the user must know what keywords to

submit so that it can be checked validly, and the data is retrieved successfully. In

Figure 5.7 it can also be seen on the left that there are testconn, Ketu, and Ketut.

This is because the function in the FlatList Pagination checks every time whether

there is data that can be loaded again or not. 'Ketu', and 'Ketut' are keywords that

are sent to the server, which should be at least 3 characters long to be sent to the

server to check the data.

38

38

Figure 5.8. FlatList Pagination snapshot

The snapshot result is very good. Heap results on this test are very good,

compared to previous tests, this heap in this test is low. For the GPU process is

slightly better than normal FlatList, which mean it’s good for better performance.

The CPU process graph in the snapshot above can be said to be good because the

39

39

graph is not too high. This good performance can occur because the FlatList

pagination limits the number of items displayed, so that the process can be carried

out quickly and optimally by the system which can reduce CPU & GPU

performance, keep fps high, reduce fps drop, and maximize load time speed.

The following is a summary of all the tests that have been carried out

Table 5.8: Summary Table

 Load
Time

UI
FPS

JS
FPS

Frame
Drop

GPU
Process

Network
Process

ScrollView Array
Map

83 second 5 FPS 4 FPS 2786 HIGH 357.42 ms

ScrollView Lodash

80 second 5 FPS 8 FPS 1924 HIGH 376.37 ms

FlatList 2 second 58 FPS 56 FPS 229 NORMAL 361.00 ms

FlatList Pagination 1 second 60 FPS 56 FPS 77 NORMAL 68.21 ms

Based on the testing and analysis above, FlatList is better to use than

ScrollView because the FlatList in the above test gets fast load times, good UI FPS

& JS FPS numbers, and normal GPU usage. ScrollView is not recommended for

processing data on a large scale because it can result in high frame drops, large GPU

usage, and low fps.

Figure 5.9. Network Process Summary Table

 Waiting (TTFB) Content Download Total Time

ScrollView Array.Map() 47.29 ms 269.25 ms 357.42 ms

ScrollView Lodash 55.92 ms 280.46 ms 376.37 ms

FlatList 45.92 ms 276.50 ms 361.00 ms

40

40

FlatList Pagination 14.29 ms 0.71 ms 68.21 ms

From the table above, it can be seen that FlatList Pagination got very good

results, due to the short Waiting (TTFB) result with 14.29 ms time, short content

download time with 280.46 ms, and the total time of 68.21 ms. However, in this

part of the Network Process, when compared between normal Flatlist on

ScrollView, ScrollView Array.Map() gets quite good results than normal FlatList.

