## CHAPTER 4 <br> ANALYSIS AND DESIGN

### 4.1 Analysis

The purpose of this project is to classify and analyze the result of weather classification results for a certain period of time. The data is gained from http://dataonline.bmkg.go.id/ .

1) Data Collection

The weather data acquired from http://dataonline.bmkg.go.id/ contains 10 attributes which is :

Table 1.1: Raw Data Attributes

| Attributes | Minimum Temperature |
| :---: | :---: |
| Tn | Maximum Temperature |
| Tx | Average Temperature |
| RH_avg | Maximum Wind Velocity |
| RR: | Maximum Wind Direction |
| ss | Average wind Velocity |
| ddd_x | Most wind Direction |
| ff_avg |  |
| ddd_car |  |

For the calculation test, the process only choose 5 attributes which is:

Table 1.2 : Used Data Attributes

| Attributes | Information |
| :---: | :---: |
| Tavg | Average Temperature |
| RH_avg | Average Humidity |
| RR | Rainfall |
| ss | sunshine |
| ff_avg | Average Wind Velocity |

Table 1.3 : Data

| Tanggal | T_Avg | RH_avg | RR | SS | Ff_avg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 2 / 2021$ | 26.8 | 90 | 12.7 | 4.7 | 4 |
| $2 / 2 / 2021$ | 27 | 90 | 6.7 | 6.2 | 4 |
| $3 / 2 / 2021$ | 28.8 | 90 | 5 | 3.3 | 6 |
| $4 / 2 / 2021$ | 26 | 90 | 71 | 2.5 | 5 |
| $5 / 2 / 2021$ | 26.7 | 90 | 29 | 3.2 | 5 |
| $6 / 2 / 2021$ | 25 | 90 | 173.5 | 4 | 3 |
| $7 / 2 / 2021$ | 26.1 | 94 | 42.1 | 0 | 1 |
| $8 / 2 / 2021$ | 25.2 | 96 | 41.1 | 0 | 3 |
| $9 / 2 / 2021$ | 26.8 | 90 | 33.7 | 0.2 | 3 |
| $10 / 2 / 2021$ | 27 | 94 | 6.2 | 6.8 | 2 |

2) Processing Data

The next step is to determine the number of cluster, in this example 2 clusters are determined with centroid as follows:

Table 1.4 : Initial Centroid

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | 26.8 | 90 | 12.7 | 4.7 | 4 |
| C2 | 27 | 90 | 6.7 | 6,2 | 4 |

Euclidian Distance is used to calculate distance between each point. The formula is :
$d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$
where
$x_{i}=$ FirstPoint
$y_{i}=$ Second Point
First, we need to calculate the distance from all datapoint to each centroid using Euclidian distance, For example:

## First Iteration

First data point $(26.8,90,12.7,4.7,4)$ to C 1 :

$$
d(1,1)=\sqrt{(26.8-26.8)^{2}+_{(90-90)^{2}}{ }_{(12.7-12.7)^{2}}{ }_{(4.7-4.7)^{2}}+_{(4-4)}}=0
$$

First data point $(26.8,90,12.7,4.7,4)$ to C2:

$$
d(1,2)=\sqrt{(26.8-27)^{2+}{ }_{(90-90)^{2}} 2+_{(12.7-6.7)^{2}}+_{(4.7-6.2)^{2}} 2+_{(4-4)^{2}}}=6.187891402
$$

Second Data Point $(27,90,6.7,6.2,4)$ to C 1 :
$d(2,1)=\sqrt{(27-26.8)^{2+}{ }_{(90-90)^{2}}+_{(6.7-12.7)^{2}}+_{(6.2-4.7)^{2}}{ }_{(4-4)^{2}}}=6.187891402$

Second Data Point (27,90,6.7,6.2,4) to C2:

$$
d(2,2)=\sqrt{(27-27)^{2+}+_{(90-90)^{2}}+_{(6.7-6.7)^{2}}+_{(6.2-6.2)^{2}}+_{(4-4)}}=0
$$

Third Data Point $(26.8,90,5,3.3,6)$ to C 1 :
$d(3,1)=\sqrt{(26.8-26.8)^{2+}}{ }_{(90-90)^{2}}{ }_{(5-12.7)^{2}}+_{(3.3-4.7)^{2}}+_{(6-4)^{2}}=8.077747211$
Third Data Point $(26.8,90,5,3.3,6)$ to C 2 :
$d(3,2)=\sqrt{(26.8-27)^{2}+_{(90-90)^{2}}+_{(5-67))^{2}}+_{(33-6.2)^{2}}+_{(6-4)}{ }^{2}}=3.916631206$
Fourth Data Point $(26,90,71,2.5,5)$ to C1:
$d(4,1)=\sqrt{(26-26.8)^{2}+_{(90-90)^{2}}+_{\left.(71-12.7)^{2}+_{(25-4.7)}\right)^{2+}(5-4)^{2}}}=58.35554815$
Fourth Data Point $(26,90,71,2.5,5)$ to C2:
$d(4,2)=\sqrt{(26-27)^{2+(90-90)^{2}+(-11-67)^{2}+(25-6.2)^{2+(5-4)^{2}}}=64.42189069, ~(1)}$
Fifth Data Point $(26.7,90,29,3.2,5)$ to C1:

$$
d(5,1)=\sqrt{(26.7-26.8)^{2}-{ }_{(90-90)^{2}}-(29-12.7)^{2}-(32-4.7)^{2}-(5-4)^{2}}=16.39969512
$$

Fifth Data Point $(26.7,90,29,3.2,5)$ to C2:
$d(5,2)=\sqrt{(26.7-27)^{2+}{ }_{(90-90)^{2}}{ }^{2+(29-6.7)^{2+}{ }_{(3.2-62)^{2}}{ }^{2+}+(5-4)^{2}}}=22.52509711$
Sixth Data Point $(25,90,173.5,4,3)$ to C1:

$$
d(6,1)=\sqrt{(25-26.8)^{2}-_{(90-90)^{2}}-_{(173.5-12.7)^{2}} 2-_{(4-4.7)^{2}}-_{(3-4)^{2}}}=160.814707
$$

Sixth Data Point $(25,90,173.5,4,3)$ to C2:
$d(6,2)=\sqrt{(25-27)^{2}+_{(90-90)^{2}}+_{(173.5-67)^{2}}{ }_{(4-6.2)}{ }^{2+}{ }_{(3-4)^{2}}}=166.8294938$
Seventh Data Point $(26.1,94,42.1,0,1)$ to C1:
$d(7,1)=\sqrt{(26.1-26.8)^{2}+_{(94-90)^{2}}{ }^{2+(42.1-12.7)^{2}}{ }_{(0-4.7)^{2}}+_{(1-4)}}=30.19834433$
Seventh Data Point $(26.1,94,42.1,0,1)$ to C2:

$$
d(7,2)=\sqrt{(26.1-27)^{2}-_{(94-90)^{2}}-_{(42.1-6.7)^{2}}{ }_{(0-6.2)^{2}}-_{(1-4)^{2}}}=36.29614305
$$

Eighth Data Point $(25.2,96,41.1,0,3)$ to C1:

$$
d(8,1)=\sqrt{(25.2-26.8)^{2}-_{(96-90)^{2}}{ }^{2-}{ }_{(41.1-12.7)^{2}}{ }_{(0-4.7)^{2}-(3-4)^{2}}}=29.46540344
$$

Eighth Data Point $(25.2,96,41.1,0,3)$ to C 2 :

$$
d(8,2)=\sqrt{(25.2-27)^{2}+(96-90)^{2}+_{(41.1-6.7)^{2}}+_{(0-6.2)^{2}}+_{(3-4)^{2}}}=35.52520232
$$

Ninth Data Point (26.8,90,33.7,0.2,3) to C1:

Ninth Data Point $(26.8,90,33.7,0.2,3)$ to C2:
$d(9,2)=\sqrt{(26.8-27)^{2}{ }_{(90-90)^{2}}{ }^{2}(33.7-6.7)^{2+}+(0.2-6.2)^{2+}{ }_{(3-4)^{2}}}=27.67742763$
Tenth Data Point $(27,94,6.2,6.8,2)$ to C 1 :

Tenth Data Point $(27,94,6.2,6.8,2)$ to C2:
$d(10,2)=\sqrt{(27-27)^{2}+(94-90)^{2}+(6.2-6.7)^{2}{ }_{(6.8-6.2)^{2+}}^{(2-4)^{2}}}=4.539823785$

From the calculation above we can conclude that first datapoint is close to first cluster (0) rather than second cluster (6.187891402). The second datapoint is close to second cluster, and so on. The following is a table of the final results of first iteration.

Table 1.5 : $1^{\text {st }}$ Iteration


From the result above we can conclude that the data points belong to which cluster as follows

Table 1.6 : $1^{\text {st }}$ Iteration Closest Cluster Result


The next step is to calculate the point of the new centroid that has been formed.

## Cluster 1 New Centroid

$C($ TempAvg , 1$)=\frac{26.8+26+26.7+25+26.1+25.2+26.8}{7}=26.08571429$
$C($ HumiAvg, 1$)=\frac{90+90+90+90+94+96+90+26.8}{7}=91.42857143$
$C($ Rain, 1$)=\frac{12.7+71+29+173.5+42.1+41.1+33.7}{7}=57.58571429$
$C($ Sun, 1$)=\frac{4.7+2.5+3.2+4+0+0+0.2}{7}=2.085714286$
$C($ Wind, 1$)=\frac{4+5+5+3+1+3+3}{7}=3.428571429$

## Cluster 2 New Centroid

$$
C(\text { TempAvg , } 1)=\frac{27+26.8+27}{3}=26.93333333
$$

$C($ HumiAvg , 2$)=\frac{90+90+94}{3}=91.33333333$
$C($ Rain, 1$)=\frac{6.7+5+6.2}{3}=5.96666667$
$C($ Sun, 1$)=\frac{6.2+3.3+6.8}{3}=5.43333333$
$C($ Wind, 1$)=\frac{4+6+2}{3}=4$

Table 1.7 : Final Centroid $1^{\text {st }}$ Iteration

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 26.08571429 | 91.42857143 | 57.58571429 | 2.085714286 | 3.428571429 |
| C 2 | 26.93333333 | 91.33333333 | 5.966666667 | 5.433333333 | 4 |

After the calculation Process on first Iteration, the final centroid on first iteration have been concluded on table above. Then the iteration process will continue until the centroid point does not change with the previouse iteration.

## Second Iteration

On the second Iteration, the final centroid on first iteration will be used to calculate the distance between data point and centroid. Here are the result from the second iteration process:

Table 1.8: $2^{\text {nd }}$ Iteration

| Datapoint | C1 | C2 |
| :---: | :---: | :---: |
| 1 | 44.99377054 | 6.904426921 |
| 2 | 51.08313352 | 1.705220742 |
| 3 | 52.68676401 | 3.358736535 |
| 4 | 13.58794484 | 65.12747329 |
| 5 | 28.69272111 | 23.20246634 |
| 6 | 16.02086013 | 167.9589084 |
| 7 | 17.26253464 | 36.76879716 |
| 8 | 24.01703477 | 35.91175914 |
| 9 | 51.6933758 | 28.27226753 |
| 10 |  | 3.61078631 |
|  |  |  |

Table 1.9: $2^{\text {nd }}$ Iteration Closest Cluster Result

| Datapoint | C1 | C2 |
| :---: | :---: | :---: |
| 1 |  | 1 |
| 2 |  | 1 |
| 3 |  | 1 |
| 4 | 1 |  |
| 5 |  | 1 |
| 6 | 1 |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

Table 1.10: Final Centroid $2^{\text {nd }}$ Iteration

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 25.82 | 92 | 72.8 | 1.34 | 3 |
| C 2 | 26.86 | 90.8 | 11.92 | 4.84 | 4.2 |

The 2nd Iteration was done and the result can be seen on table above. The centroid on 2nd iteration still differ from 1st iteration, then the iteration process will continue.

## Third Iteration

Table 1.11: Final Centroid $3^{\text {rd }}$ Iteration

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 25.7 | 91.33333333 | 95.53333333 | 2.166666667 | 3 |
| C 2 | 26.61428571 | 90.8 | 11.92 | 4.84 | 4.2 |

The Calculation process on third iteration has been formed and the result can be seen on table above. The centroid on 3rd iteration still differ from 2nd iteration, then the iteration process will continue.

## Fourth Iteration

Table 1.12: Final Centroid $4^{\text {th }}$ Iteration

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 25.5 |  |  |  |  |
| C 2 | 26.55 | 91.75 | 22.0625 | 3.05 | 3.5 |

The Calculation process has been done and the centroid formed on 4th iteration still differ from 3rd iteration, then the iteration process will continue.

## Fifth Iteration

Table 1.13 : Final Centroid $5^{\text {th }}$ Iteration

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 25 | 90 | 173.5 | 4 | 3 |
| C 2 | 26.48888889 | 91.55555556 | 27.5 | 2.988888889 | 3.666666667 |

The centroid result from 5th iteration still differ from 4th iteration, then the iteration process will continue.

## Sixth Iteration

Table 1.14 : Final Centroid $6^{\text {th }}$ Iteration

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity <br> C 1 <br> C 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26.48888889 | 91.55555556 | 27.5 | 2.988888889 | 3.666666667 |  |

Table 1.15 : Final Result of processing data

| Data Point | C1 | C2 |
| :---: | :---: | :---: |
| 1 |  | 1 |
| 2 |  | 1 |
| 3 |  | 1 |
| 4 |  | 1 |
| 5 |  | 1 |
| 6 | 1 |  |
| 7 |  | 1 |
| 8 |  | 1 |
| 9 |  |  |
| 10 |  |  |

The calculation process has been done on 6th iteration and the centroid of the 6th iteration does not change from 5th iteration. The iteration will not continue and the final centroid has been determined on $\mathrm{C} 1(25,90,173.5,4,3)$ and C 2 ( 26.48888889, $91.55555556,27.5,2.988888889,3.666666667)$. The cluster result can be seen on table above, C 2 have 9 data points, the characteristic result from C 2 is the day with light rainfall and moderate rainfall, while in C 1 have the characteristic the day with very heavy rainfall, The conclusion from February 2021 for the city of Semarang is that the citizens have to be careful on February 6th, because it has very high rainfall and has the potential for flooding
3) Cluster Quality check on Elbow Method and then with Silhouette Method

## Elbow Method

The Elbow Method is used to determine the number of K by determining the percentage of compariosn results between amounts of clusters that will form and elbow at a point (after a point where the result starts to decrease linearly). The Elbow method use the WCSS (WithinCluster Sum Of Squares) on every amounts of clusters. Usually Elbow Method is used to determine the number of k on the K-Means Clustering

Elbow method use WCSS on every amounts of clusters, so we need to calculate the data and classify them into the range of clusters we want, in this case we will try to do WCSS testing from $\mathrm{k}=1$ to $\mathrm{k}=4$.

$$
W C S S=\sum_{i=1}^{k}(x i-C i)^{2}
$$

where
$x i=$ data distribution on cluster i
$\mathrm{ci}=$ centroid of cluster i

!

## $K=1$

Below is the final centroid on $\mathrm{K}=1$

Table 1.16 : Final Centroid on K=1

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 25 | 90 | 173.5 | 4 | 3 |
| C 2 | 26.48888889 | 91.55555556 | 27.5 | 2.988888889 | 3.666666667 |

Table 1.17: The amount of WCSS on K=1

| Data Point | Distance from Centroid | Class | Distance with Centroid Squared |
| :---: | :---: | :---: | :---: |
| 1 | 29.48361748 | C 1 | 869.2837 |
| 2 | 35.57228837 | C 1 | 1265.3877 |
| 3 | 37.20733395 | C 1 | 1384.3857 |
| 4 | 28.9757433 | C 1 | 839.5937 |
| 5 | 13.25412011 | Cl | 175.6717 |
| 6 | 131.4188103 | C 1 | 17270.9037 |
| 7 | 4.808918797 | C 1 | 23.1257 |
| 8 | 5.776478166 | C 1 | 33.3677 |
| 9 | 9.024616335 | C 1 | 81.4437 |
| 10 | 36.22609143 | C 1 | 1312.3297 |

$K=2$

Table 1.18: Final Centroid on $\mathrm{K}=3$

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 25 | 90 | 173.5 | 4 | 3 |
| C 2 | 26.48888889 | 91.55555556 | 27.5 | 2.988888889 | 3.666666667 |

Table 1.19: The amount of WCSS on $\mathrm{K}=3$

| Data Point | Distance from Centroid | Class | Distance with Centroid Squared |
| :---: | :---: | :---: | :---: |
| 1 | 14.98651245 | C 2 | 224.5955556 |
| 2 | 21.11263445 | C 2 | 445.7433333 |
| 3 | 22.67835483 | C 2 | 514.3077778 |
| 4 | 43.55370886 | C 2 | 1896.925556 |
| 5 | 2.556690569 | C 2 | 6.536666667 |
| 6 | 15.34050557 | C 2 | 0 |
| 7 | 14.68850647 | C 2 | 235.3311111 |
| 8 | 7.012766137 | C 2 | 215.7522222 |
| 9 | 21.84556909 | C 2 | 49.17888889 |
| 10 | Sum | C 1 | 477.2288889 |
|  |  |  | 4065.6 |

$K=3$

Table 4.18: Final Centroid on $\mathrm{K}=3$

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | 25 | 90 | 173.5 | 4 | 3 |
| C2 | 26.16 | 92 | 43.38 | 21.18 | 3.4 |
| C3 | 26.9 | 91 | 7.65 | 5.25 | 4 |

Table 1.20: The amount of WCSS on $\mathrm{K}=3$

| Data Point | Distance from Centroid | Class | Distance with Centroid <br> Squared |
| :---: | :---: | :---: | :---: |
| 1 | 5.178320191 | C 3 | 26.815 |
| 2 | 1.677796174 | C 3 | 2.815 |
| 3 | 3.97932155 | C 3 | 15.835 |
| 4 | 27.7703511 | C 2 | 771.1924 |
| 5 | 14.75521603 | C 2 | 217.7164 |
| 6 | 0 | C 1 | 0 |
| 7 | 4.865429066 | C 2 |  |
| 8 | 9.961546065 | C 2 | 23.6724 |
| 9 | 4.185092592 | C 3 | 99.2324 |
| 10 | Sum | C 2 | 17.515 |
|  |  |  |  |
|  |  |  | 1187.588 |

## $K=4$

Table 1.21 : Final Centroid on $\mathrm{K}=4$

| Cluster | Average <br> Temperature | Average <br> Humidity | Rainfall | Sunshine | Average <br> Wind <br> Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | 26.2 | 92.5 | 36.475 | 0.85 | 3 |
| C2 | 26.9 | 91 | 7.65 | 5.25 | 4 |
| C3 | 25 | 90 | 173.5 | 4 | 3 |
| C4 | 26 | 90 | 71 | 2.5 | 5 |

Table 1.22: The amount of WCSS on K-4

| Data Point | Distance from Centroid | Class | Distance with Centroid Squared |
| :---: | :---: | :---: | :---: |
| 1 | 5.178320191 | C 2 |  |
| 2 | 1.677796174 | C 2 |  |
| 3 | 3.97932155 | C 2 | 2.815 |
| 4 | 0 | C 4 | 15.835 |
| 5 | 8.479276207 | C 1 | 0 |
| 6 | 0 | C 3 |  |
| 7 | 6.214750598 | C 1 | 71.898125 |
| 8 | 5.946690256 | C 1 | 0 |
| 9 | 3.838375307 | C 1 | 38.623125 |
| 10 | 4.185092592 | C 2 | 35.363125 |
|  |  |  | 14.733125 |
|  | Sum |  | 17.515 |

The calculation process has been done and the amount of WCSS from $\mathrm{k}=1$ to $\mathrm{k}=4$ are 23255.493, 4065.6, 1187.588, 223.5975. and ilustration below will show the graphs of WCSS.

Figure 1.1. Elbow Method


From that ilustration above, the point starts to decrease linearly and form a elbow at the amount of k is equal to 2 . so based on Eblow Method the amount of cluster is set to 2

## Silhouette Coefficient

Silhouette Coefficient is a method to check the quality amount of each data point to its cluster. Silhouette Coefficient has a range between -1 and 1 . The amount of Silhouette Coefficient close to 1 shows that the data point has been classified properly or is right in the middle of the cluster, when is near to 0 indicates that data point is located between clusters, -1 indicates that data point is assigned to the wrong cluster. To check the quality amount of ideal cluster we need to compute the silhouette coefficients for each data point, and then average it all the samples to get the silhouette score.

Below is the formula to compute Silhouette Coefficient to each data points
$s(i)=\frac{b(i)-a(i)}{\max (b(i), a(i))}$
where
$\mathrm{a}(\mathrm{i})=$ The average distance of that data point with all other points on the same cluster $b(i)=$ The average distance of that data point with all member from closest cluster

Same with Elbow Method, Silhouette Score use every Silhouette Coefficient on each data point on every amounts of clus ters, so we need to calculate the data and classify them into the range of cluster we want, in this case we will try to do Silhouette Score testing from $\mathrm{k}=2$ to $\mathrm{k}=4$. Below is the example to calculate silhouette score for first data point on $\mathrm{k}=2$
$\mathrm{K}=2$
we need to calculate the first silhouette coefficient for first data point $(26.8,90$, 12.7, 4.7, 4). to find the a(i) for first data point we need to calculate the average distance from data point to all data point in the same cluster. Bellow is the result for classification in $\mathrm{K}=2$

Table 1.23 : Cluster result for $\mathrm{K}=2$

| Data Point | C1 | C2 |
| :---: | :---: | :---: |
| 1 |  | 1 |
| 2 |  | 1 |
| 3 |  | 1 |
| 4 |  | 1 |
| 5 |  | 1 |
| 6 | 1 |  |
| 7 |  | 1 |
| 8 |  | 1 |
| 9 |  |  |
| 10 |  |  |

Find a(i), calculate the average distance from data point to all data point in the same cluster .
$\mathrm{a}(1)=6.187891402+8.077747211+58.35554815+16.39969512+30.19834433+$ $29.46540344+21.5+8.167006796 / 8=22.29395456$
$a(2)=6.187891402+3.916631206+64.42189069+22.52509711+36.29614305+$ $35.52520232+27.67742763+4.539823785 / 8=25.1362634$
and so on, below is the result for $\mathrm{a}(\mathrm{i})$ on each data point on $\mathrm{K}=2$

Table 1.24 : a(i) result for $\mathrm{K}=2$


After determining the $a(i)$, the next step is to calculate $b(i), b(i)$ is the average distance from data point to all data point in the closest cluster. For example:

To calculate $b(i)$ for first data point, we need to check the closest cluster from cluster that data points belong to other cluster, for first data point (b1) the closest cluster are C1, so we need to calculate the distance from data point to all members on C 1

Table 1.25: The distance from C2 to all other clusters on $\mathrm{K}=2$

| Cluster | Distance based on <br> Centroid | Closest cluster |
| :---: | :---: | :---: |
| C 2 | 146.0209003 | C 1 |

On C 1 in the first cluster there is only one data point $(25,90,173.5,4,3)$, then calculate the distance between data point to $(25,90,173.5,4,3)$

$$
d(1,6)=\sqrt{(26.8-25)^{2+}{ }_{(90-90)^{2}}{ }^{2+112.7-173.5)^{2}+_{(4.7-4)^{2}}+_{(4-3)^{2}}}=160.814707}
$$

caculating the $\mathrm{b}(\mathrm{i})$

$$
b(1)=\frac{131.5415144}{1}=160.814707
$$

below are the result of $\mathrm{b}(\mathrm{i})$ from $\mathrm{K}=2$

Table 1.26: $b(i)$ result on $k=2$

| Datapoint | b(i) |
| :---: | :---: |
| 1 | * 160.814707 |
| 2 | T A S K ${ }^{166.8294938}$ |
| $3$ | $168.5377702$ |
| $4$ | $160.814707$ |
| 5 | $146.0209003$ |
| 6 | $146.0700742$ |
|  | $131.5415144$ |
| $8$ | $132.59638$ |
| 9 | $131.5415144$ |
| 10 | 167.3861703 |

Now we have the result of $\mathrm{a}(\mathrm{i})$ and $\mathrm{b}(\mathrm{i})$ on each data point on $\mathrm{K}=2$, the next step is to calculate the silhouette coefficient on each cluster

$$
\begin{aligned}
& s(1)=\frac{160.814707-22.29395456}{160.814707}=0.861368683 \\
& s(2)=\frac{166.8294938-25.1362634}{166.8294938}=0.849329619
\end{aligned}
$$

and so on, bellow is the result of $\mathrm{s}(\mathrm{i})$ on each datapoint on $\mathrm{K}=2$

Table 1.27 : $\mathrm{S}(\mathrm{i})$ result on $\mathrm{K}=2$

| Datapoint | $\mathbf{a ( i )}$ | $\mathbf{b}(\mathbf{i})$ | $\mathbf{s ( i )}$ |
| :---: | :---: | :---: | :---: |
| 1 | 22.29395456 | 160.814707 | 0.861368683 |
| 2 | 25.1362634 | 166.8294938 | 0.849329619 |
| 3 | 26.56471335 | 168.5377702 | 0.842381246 |
| 4 | 49.20128116 | 160.814707 | 0.694049866 |
| 5 | 20.40512803 | 146.0209003 | 0.858813497 |
| 6 | 0 | 146.0700742 | 1 |
| 7 | 24.71544535 | 131.5415144 | 0.812109162 |
| 8 | 24.39186691 | 132.59638 | 0.816044247 |
| 9 | 21.16802814 | 131.5415144 | 0.839077205 |
| 10 | 26.13087076 | 167.3861703 | 0.843888711 |

The result of $\mathrm{s}(\mathrm{i})$ on each data point have been concluded, the next step is to count the average of all $s(i)$ on each data point

Silhoutte $S$ core $=\frac{0.861368683+0849329619+0.842381246+0.694049866+0838813497+1+0812109162+0.0816044247+0833077205+0.843898711}{10}=0.841706224$

The silhouette score from $\mathrm{k}=2$ is 0.841706224 . The next step is to calculate the silhouette score for $\mathrm{K}=3$ and $\mathrm{K}=4$
$K=3$

Table 1.28 : s(i) result on $\mathrm{K}=3$

| Datapoint | $\mathbf{a ( i )}$ | $\mathbf{b}(\mathbf{i})$ | $\mathbf{s ( i )}$ |
| :---: | :---: | :---: | :---: |
| 1 | 7.477548469 | 160.814707 | 0.760210465 |
| 2 | 4.881448797 | 37.28915216 | 0.849329619 |
| 3 | 6.252258147 | 38.75218647 | 0.838660506 |
| 4 | 34.91828937 | 63.48427296 | 0.449969453 |
| 5 | 19.16882405 | 21.641432 | 0.114253435 |
| 6 | 0 | 130.2125052 | 1 |
| 7 | 14.21666017 | 35.21423053 | 0.596280823 |
| 8 | 14.39291856 | 34.39081527 | 0.581489463 |
| 9 | 15.64095114 | 26.69510515 | 0.414089173 |
| 10 | 6.489742202 | 37.91554789 | 0.828836914 |

## $K=4$

Table 1.29 : $\mathrm{s}(\mathrm{i})$ result on $\mathrm{K}=4$

| Datapoint | $\mathbf{a ( i )}$ | $\mathbf{b}(\mathbf{i})$ | $\mathbf{s}(\mathbf{i})$ |
| :---: | :---: | :---: | :---: |
| 1 | 7.477548469 | 24.39086072 | 0.693428266 |
| 2 | 4.881448797 | 30.50596753 | 0.839983807 |
| 3 | 6.252258147 | 31.93591546 | 0.804224865 |
| 4 | 0 | 137.1317916 | 1 |
| 5 | 11.55454372 | 21.641432 | 0.466091536 |
| 6 | 0 | 102.5353598 | 1 |
| 7 | 9.104038271 | 35.21423053 | 0.741467068 |
| 8 | 8.965860315 | 34.39081527 | 0.739294918 |
| 9 | 8.376977097 | 26.69510515 | 0.686198011 |
| 10 | 6.489742202 | 31.10883923 | 0.79138591 |

And now after the calculation process from $\mathrm{K}=2$ to $\mathrm{K}=4$ we now have all the silhouette coefficient score as follows:

Table 1.30 : Cluster quality result with Silhouette Score

| Amount of Clusters | Silhouette Coefficient |
| :--- | :--- |
| 2 | 0.841706224 |
| 3 | 0.645288222 |
| 4 | 0.776207438 |

From the table above the amount of 2 cluster have the best score for silhouette coefficient, this makes the $\mathrm{k}=2$ is an optimal clusters
4) Final Analysis

From the calculation and classification process above, we can conclude that the Elbow Method has the same value for k with Silhouette Coefficient. The amount of silhouette coefficient on $\mathrm{k}=2$ is 0.841706224 , on $\mathrm{k}=3$ is 0.645288222 and $\mathrm{k}=4$ 0.776207438 , the highest amount of silhouette coeffficient is 0.841706224 , so the optimal number of cluster is 2 . C 2 have 9 data points, the characteristic result from C 2 is the day with light rainfall and moderate rainfall, while in C 1 have the characteristic the day with very heavy rainfall, The conclusion from February 2021 for the city of Semarang is that the citizens have to be careful on February 6th, because it has very high rainfall and has the potential for flooding

### 4.2 Design

Figure 1.2. Flowchart Process


The work process of this project can be seen on the Flowchart above, the first step is determining the value of K and centroid by user, then the classification process is started, On each iteration the value of newly formed centroid will be compared with the previous iteration, if the centroid changes then the iteration process will continue

