

37

CHAPTER 5

IMPLEMENTATION AND TESTING

 Implementation

This project uses Arduino IDE for programming and the program is divided by the

function to save memory usage. Below is the complete explanation of the programs.

 Code for Compression (Modified Huffman)

Here is the code for the Compression process :

1. char* StrCompress(char saved[])
2. {
3. char *s = saved;
4. char *r, *p;
5. int count, i;
6.
7. while (*s)
8. {
9. /*Start from first character*/
10. count = 1;
11. /*Check if the character at the point is the same as following one*/
12. while (*s && *s == *(s+1))
13. {
14. /*If yes, then increase the count and increment the pointer to next

character*/

15. count++;
16. s++;
17. }
18. if (count > 1) /*If more than one character of a kind is found*/
19. {
20. /*Assign the value of count to second occurence of a particular

character*/

21. *(s - count + 2) = count + '0';
22. /*Using array shift, delete all other character occurences except the

first and second one*/

23. for (i = 0; i < count - 2; i++)
24. {
25. p = s + 1;
26. r = s;
27.
28. while (*r)
29. *r++ = *p++;
30. s--;
31. }
32. }
33. s++;
34. }
35. return saved;
36. }

38

In the compression process, line 1 needed to get the input char array compressed. Then,

line 7 is for looping a pointer as long as an inputted char array. Then, in lines 12 until 16, it is

declared that if the first index and next index character are the same, the loop will count the number

of occurrences. Finally, in line 21 until 30, if the character number of occurrences is more than

one, the first character found will append with the total occurrences of said character.

Here is the code for measuring compression time :

1. Serial.println("Compressed String is : ");
2. unsigned long time1 = micros();
3. Serial.print(StrCompress(saved));
4. Serial.println("\nWaktu Compress : ");
5. Serial.print(micros() - time1);

The measurement of compression time is using the micros() function. Total compression

time starts at line 2 and will stop after the compression process displaying the time result at line 5.

Here is the code for Decompression process :

1. Serial.println("Decompressed String is : ");
2. //String comp = "A4B3C2";
3. String comp(saved);
4. int len = comp.length();
5. int x = comp.toInt();
6. String simpan ="";
7. String temp;
8. int temp1;
9. String decomp = "";
10. unsigned long time2 = micros();
11. for(i=0; i<len; i++){
12. if(i % 2 == 0){
13. simpan = comp.charAt(i);
14. }
15. else{
16. temp = comp.charAt(i);
17. temp1 = temp.toInt();
18. for(int x=0; x<temp1; x++){
19. decomp = decomp + simpan;
20. }
21. }
22. }
23. Serial.println(decomp);
24. Serial.println("Waktu Decompress : ");
25. Serial.print(micros() - time2);

For the decompression process, the total decompression time starts measuring in line 10

before the looping process, and it will stop and show the time result after the loop, as shown in

line 26. The decompression process is started in line 11 by looping as long as the length of the

compressed input string. Then, in lines 12 and 13, the character will be saved in a simple variable

39

when the index is odd-numbered. The code line 15 until 19 starts when the index number is even-

numbered, then the character will be temporarily saved in the temp variable (line 16). Then in the

following line, the temp1 is used to store the converted character to integer value used next for

looping. Finally, in line 19, the character will be appended in the decomp variable, as long as the

number of occurrences saved in the temp1 variable.

 Code for RSA Encryption

Here is the code for RSA Encryption process :

1. void encrypt(){
2. long int pt, ct, key = e[0];
3. long int k, len;
4. int i = 0;
5. len = msg.length();
6.
7. while(i != len)
8. {
9. pt = m[i];
10. pt = pt - 96; //Untuk mencegah character melebihi batas unsigned

dan menjaga value tetap dalam range

11. k = 1;
12. for(j = 0; j < key; j++){
13. k = k * pt;
14. k = k % n;
15. }
16. temp[i] = k;
17. ct = k + 96;
18. c[i] = ct;
19. i++;
20. }
21. c[i] = -1;
22. Serial.println("\nThe Encrypted Message Is");
23. for(i = 0; c[i] != -1; i++){
24. Serial.print(c[i]);
25. }
26. Serial.println("\nThe Encrypted Message In HEX");
27. for (int i=0; c[i] != -1 ;i++){
28. Serial.println(c[i]&0xFF,HEX);
29. }
30. Serial.println("-----END OF HEX-----");
31. }

In this RSA encryption process, line 2, the key used is E as a public key. Thus, the key

used in encryption is E and N. Line 12 until line 15 is used to generate k, which is the modulo of

message in integer (message is separated per character block (mi)) as long as the key index. Then,

in line 17, k is added back with 96 to convert back to printable ASCII characters. From line 22

40

until 24, the encrypted text will appear on the serial monitor. Then, to insert the message into the

RFID card, line 26 until 28 is used to convert the ASCII text to hexadecimal format.

Here is the code for RSA Decryption Process :

1. void decrypt(){
2. long int pt, ct, key = d[0];
3. long int k;
4. int i = 0;
5. while(c[i] != -1)
6. {
7. ct = temp[i];
8. k = 1;
9. for(j = 0; j < key; j++)
10. {
11. k = k * ct;
12. k = k % n;
13. }
14. pt = k + 96;
15. m[i] = pt;
16. i++;
17. }
18. m[i] = -1;
19. Serial.println("\nThe Decrypted Message Is");
20. for(i = 0; m[i] != -1; i++){
21. Serial.print(m[i]);
22. }

For the decryption process, in line 2, the key used is D as a private key. After that, the key

used in decryption is E and N. Line 12 until line 15 is used to generate k, which is the modulo of

ciphertext in integer (the ciphertext is separated per character block (ci)) as long as the key index.

After that, the key D is not shared and used to calculate back from ciphertext to plaintext message.

Here is the code to measure time of RSA encryption and decryption :

1. unsigned long time1 = micros();
2. encrypt();
3. Serial.println("\nWaktu Encrypt : ");
4. Serial.print(micros() - time1);
5. unsigned long time2 = micros();
6. decrypt();
7. Serial.println("\nWaktu Decrypt : ");
8. Serial.print(micros() - time2);

The measurement of encryption and decryption time is using the micros() function. Total

encryption time starts at line 1 and will stop after the encryption process displaying the time

result at line 4. The decryption process will start measuring in line 5 and will stop after the

decryption process is done, displayed in line 8.

41

 Code for AES Encryption

Here is the code for AES encryption and decryption :

1. unsigned long time1 = micros();
2. aes128_enc_single(key, msg);
3. Serial.print("Encrypted: ");
4. Serial.println();
5. Serial.println(msg);
6. Serial.println("\nWaktu Encrypt : ");
7. Serial.print(micros() - time1);
8. Serial.println("\nConvert to HEX :");
9. Serial.println();
10. for (int i=0; msg[i] != 0 ;i++){
11. Serial.println(msg[i]&0xFF,HEX);
12. }
13. unsigned long time2 = micros();
14. aes128_dec_single(key, msg);
15. Serial.print("Decrypted: ");
16. Serial.println();
17. Serial.println(msg);
18. Serial.println("\nWaktu Decrypt : ");
19. Serial.print(micros() - time2);

In this AES encryption process, in line 1, the encryption time will start measuring in, and

in line 7, the total time of encryption will be shown in output after the encryption process was

done. After that, the ciphertext will be shown in text format in line 5 and hexadecimal format using

the loop at line 11 until 12. Finally, the decryption process time is measured starting at line 13 and

will be stopped after the decryption process ends at line 19.

 Code for Random Compression

Here is the code for random compression :

1. char string[6] = {'A','B','C','D','E','F'};
2. const byte stlen = sizeof(string) / sizeof(string[0]); //menghitung size

dari array

3. char notes[len+1]; // ditambah 1 untuk NULL
4. unsigned long time1 = micros();
5. void setup() {
6. Serial.begin(9600);
7. randomSeed(analogRead(A0));
8. for (int n = 0; n < 16 ; n++)
9. {
10. notes[n] = string[random(stlen)];
11. notes[n + 1] = '\0'; //untuk terminate string dibagian ujung
12. }
13. }

The code in line 1, inside the array, is characters that determine the random input because

the result is expected to be repeated character, so the input is limited. The purpose of limiting this

42

array is to make the result of compression more consistent. Line 7 is needed to ensure that every

time the program runs, the output string is random. The line 8 until line 11 function is to loop the

character randomly from the array to create a string with 16 characters.

 Testing

 RSA Encryption Testing without Compression

After testing RSA encryption using the same sized bytes of words, in this test that even

with the same amount of character as plaintext. The ciphertext result size got an increase in size,

as could be seen in the table down below :

Table 5.1. RSA Encryption Testing Comparison

Words Plaintext Size

(in Bytes)

Encrypted Size

(in Bytes)

Encryption Time

(in microsecond)

about 5 11 89260

brand 5 9 89260

cheap 5 9 89260

drive 5 8 89260

event 5 7 89260

additional 10 20 115248

basketball 10 24 115248

comparison 10 24 115248

determined 10 16 115248

electronic 10 24 115248

Standard Deviation 7.22341870431015

Table 5.1 above shows that while the size of encrypted text may vary depending on the

plaintext, the encryption time itself remains consistent per size of words. The RSA algorithm

encrypted text size is closer to the original plaintext size than the AES encryption, indicating that

this algorithm is better for encrypting short text. The time needed to complete encryption was

consistent across the inputs but significantly slower when compared to the AES algorithm.

 AES Encryption Testing without Compression

In this AES testing, the size of text is also increasing after being encrypted. However,

interesting enough, the size is increased in a certain amount and is more consistent compared to

the RSA algorithm before, as could be seen in the table below :

43

Table 5.2. AES Encryption Testing Comparison

Words Plaintext Size

(in Bytes)

Encrypted Size

(in Bytes)

Encryption Time

(in microsecond)

about 5 40 728

brand 5 40 728

cheap 5 40 728

drive 5 46 728

event 5 40 728

atmosphere 10 44 760

basketball 10 46 760

contribute 10 42 760

discovered 10 40 760

enterprise 10 46 760

Standard Deviation 2.7968235951204

In Table 5.2, we could see that the encryption is increasing to around 40 bytes from any 5

and 10 bytes samples. That indicates that the encryption changes any plaintext input between 1

character until 15 characters into the 16-bit length of the ciphertext. However, the time result is

showing that AES is consistently faster than the RSA algorithm. This encryption also has a lower

standard deviation that is ≈2.80, compared to RSA, with ≈7.20. This result would be necessary to

notice for the later test when combining the encryptions with the compression method.

 Encryption Time without Compression

Below is the table of comparison between the two algorithms encryption times, using random

input (source: http://www.yougowords.com/16-letters) :

Table 5.3. RSA and AES Encryption Time Comparison

Words

RSA

Encryption Time

(in microsecond)

AES

Encryption Time

(in microsecond)

acknowledgements 146428 660

agriculturalists 146428 660

biostatisticians 146428 660

biotechnologists 146428 660

cinematographers 146428 660

counterarguments 146428 660

44

differentiations 146428 660

diversifications 146428 660

electromagnetics 146428 660

experimentations 146428 660

familiarizations 146428 660

formularizations 146428 660

geochronologists 146428 660

governmentalists 146428 660

hypercatabolisms 146428 660

hospitalizations 146428 660

immunomodulatory 146428 660

insurrectionists 146428 660

microelectronics 146428 660

misapprehensions 146428 660

nationalizations 146428 660

neoconservatives 146428 660

objectifications 146428 660

ophthalmologists 146428 660

personifications 146428 660

photojournalists 146428 660

quadruplications 146428 660

quarterfinalists 146428 660

rationalizations 146428 660

reconfigurations 146428 660

standardizations 146428 660

superimpositions 146428 660

totalitarianisms 146428 660

transplantations 146428 660

ultracentrifuged 146428 660

ultrafiltrations 146428 660

vasoconstrictors 146428 660

videoconferences 146428 660

weatherboardings 146428 660

whatchamacallits 146428 660

MEAN 146428 660

This test uses words that use 16 characters to form. Whether the RSA and AES are using

the exact words and length of the word in this testing, from Table 5.3 above, we could see that the

average time for encryption using RSA is 146428 microseconds or 0.146428 seconds. This result

is significantly slower than the AES method of encryption, which is only 660 microseconds or

45

0.00066 seconds. Furthermore, when comparing the AES algorithm results from testing samples

using 5 bytes and 10 bytes plaintext, the encryption times are higher than this testing using 16

bytes plaintext. That shows this method only works optimally if the input is the same length as the

AES 128-bit key length, which is also 16 bytes in size.

 Decryption Time without Compression

The table below is the comparison between the two algorithms decryption times :

Table 5.4. RSA and AES Decryption Time Comparison

Words

RSA

Decryption Time

(in microsecond)

AES

Decryption Time

(in microsecond)

acknowledgements 64480 64480

agriculturalists 64480 64480

biostatisticians 64476 64476

biotechnologists 64480 64480

cinematographers 64480 64480

counterarguments 64480 64480

differentiations 64480 64480

diversifications 64476 64476

electromagnetics 64480 64480

experimentations 64480 64480

familiarizations 64480 64480

formularizations 64480 64480

geochronologists 64480 64480

governmentalists 64476 64476

hypercatabolisms 64480 64480

hospitalizations 64480 64480

immunomodulatory 64480 64480

insurrectionists 64480 64480

microelectronics 64476 64476

misapprehensions 64480 64480

nationalizations 64480 64480

neoconservatives 64476 64476

objectifications 64480 64480

ophthalmologists 64476 64476

personifications 64480 64480

46

photojournalists 64480 64480

quadruplications 64480 64480

quarterfinalists 64480 64480

rationalizations 64480 64480

reconfigurations 64480 64480

standardizations 64480 64480

superimpositions 64480 64480

totalitarianisms 64480 64480

transplantations 64480 64480

ultracentrifuged 64480 64480

ultrafiltrations 64480 64480

vasoconstrictors 64480 64480

videoconferences 64480 64480

weatherboardings 64480 64480

whatchamacallits 64480 64480

MEAN 64479.4 64479.4

Table 5.4 shows that the average decryption time of the two algorithms is the same, 64479.4

ms, between RSA and AES algorithms using the same input variable. That indicates that the

limitation of decrypting time(s) is only the system this test was running on (Arduino UNO

processing power).

Combining Encryption with Simple Compression Algorithms

Before conducting a test using a combination of Encryption and Compression algorithms, the

limitation of the simple compression algorithms program must be stated. This limitation of usage

is mainly because of Arduino software limitations. As we could see on the figures below :

Figure 5.1 Compression Test 1 Using Paragraph Input (source :

https://tekno.kompas.com/read/2020/10/22/10250047/kelebihan-dan-kekurangan-iphone-12-di-

mata-para-pengulas-gadget?page=all#page4)

47

Figure 5.2 Compression Test 2 Using Paragraph Input (source :

https://tekno.kompas.com/read/2020/11/05/08240007/internet-buatan-elon-musk-diuji-coba-

kecepatan-download-tembus-160-mbps)

Figure 5.1 and Figure 5.2 concluded that everyday words or paragraphs are not adequate

when using this program. The program was made to be compatible for it to run on Arduino

hardware. This program only supports the compression of repeating characters using techniques

called Run Length Encoding. This method is included in the category of lossless compression

method, which is a compression method that ensures the data compressed could be

decompressed back into its original state without losing any original data in the process.

Figure 5.3 Simple Diagram of Run Length Encoding (source :

https://thomaslock.blog/2018/01/04/run-length-encoding-tutorial/)

Figure 5.3 above concluded that this method is more effective when the input data are

repeatable characters. Because of this, the testing method used in this test is different from the test

previously (on RSA and AES test) and using repeatable characters as input is the only viable option

because of this reason.

48

For the procedure of this comparison, first, the input text would be compressed then

encrypted after it. However, it is impossible to do the other way around (encrypt text first, then

compress after it) because the program would not read the already encrypted version of the text,

primarily non-alphabetical characters.

 Comparison of RSA and AES with Compression Method

With the knowledge from the previous sub-chapter explanation (see 5.2.4), this test was

run using custom-made input of 16 alphabetical characters with random times of occurrence each.

This comparison below was run using the same method as explained in sub-chapter 5.2.4. Below

is the table time comparison between AES and RSA using compression:

Table 5.5. AES and RSA with Compression Comparison

Input AES with Compression Time

(in microseconds)

RSA with Compression Time

(in microseconds)

Compression Encryption Compression Encryption

AAABBBBCCCCCDDDD 29120 660 29120 138108

AABBBBBCCCCCDDDD 29120 660 29120 137068

AAABBBBBBCCCCDDD 29120 660 29120 137068

AAABBBBBBCCCCCDD 29120 660 29120 138108

AAAAAABBBBBBCCDD 29120 660 29120 138108

AAABBCCCCDDDEEEE 31200 672 31200 141236

AAAABBBCCCDDEEEE 31200 672 31200 141236

AAABBCCCCDDDDDEE 31200 672 31200 139148

AAABBBCCCCCDDEEE 31200 672 31200 141236

AABBBBCCCCCDDDEE 31200 672 31200 139148

AAABBBCCDDEEEFFF 33280 660 33280 141236

AABBBBCCCDDEEEFF 33280 660 33280 140188

AABBBCCCCDDDEEFF 33280 660 33280 140188

AAAABBCCDDEEFFFF 33280 660 33280 142268

AABBCCDDEEEEFFFF 33280 660 33280 142268

AABBBCCDDDEEEFFF 33280 660 33280 140188

AABBBBCCDDDEEEFF 33280 660 33280 139148

BBBCCDDDEEEFFFGG 33280 660 33280 140188

BBCCDDDEEEEFFGGG 33280 660 33280 141236

BBBCCCCDDEEFFFGG 33280 660 33280 141236

BBBBCCDDDEEFFFGG 33280 660 33280 139148

BBBBBCCDDEEEFFGG 33280 660 33280 139148

49

BBBCCDDDDEEEFFGG 33280 660 33280 139148

BBCCDDDEEFFGGHHH 35360 660 35360 141236

BBCCDDDEEEFFGGHH 35360 660 35360 141236

BBBCCCDDEEFFGGHH 35360 660 35360 141236

BBCCDDEEEFFGGHHH 35360 660 35360 142268

BBCCDDEEEFFFGGHH 35360 660 35360 142268

BBBCCDDDEEFFGGHH 35360 660 35360 140188

BBCCDDDEEFFGGGHH 35360 660 35360 141236

BBCCCDDEEFFFGGHH 35360 660 35360 142268

BBCCDDEEFFFGGHHH 35360 660 35360 142268

CCDDEEFFGGHHIIII 35360 660 35360 144348

CCCDDEEFFGGHHIII 35360 660 35360 144348

CCDDEEFFFGGGHHII 35360 660 35360 144348

CCDDEEEFFFGGHHII 35360 660 35360 144348

CCCCDDEEFFGGHHII 35360 660 35360 144348

DDEEEFFGGHHIIJJJ 35360 660 35360 144348

DDEEFFGGGHHIIIJJ 35360 660 35360 144348

DDDEEFFGGHHIIJJJ 35360 660 35360 143308

MEAN 33384 661.5 33384 141100

Standard Deviation 4.019 2109.094

The data from Table 5.5 above show that the inconsistency from RSA algorithms affects

the result compared to AES. The RSA got a higher standard deviation which was 2109.094, versus

a more consistent AES of 4.019. The average time to run compression plus AES from this data is

34045.5 microseconds, while the average time to run compression plus RSA is 168238.95

microseconds. This result shows that AES is more time-efficient for the Arduino system to run.

Interestingly, between the same algorithms compressing the plaintext before encrypting it with

RSA is improving in average time, from averaging without compression 146428 microseconds

and then 5328 microseconds faster with compression down onto 141100 microseconds (3.63865%

faster than without compression). However, for AES, the same could not be said with compression.

The average time to complete increases instead 0.227273% from 660 microseconds to 661.5

microseconds.

50

 Compression Effectiveness

The effectiveness of compression also could be seen in Table 5.6 and Table 5.7 below :

Table 5.6. Compression Rate to Time Chart

Table 5.7. Compression Rate to Time Data Comparison

Test
Compression Rate

50% 25% 12.5%

1 29120 33280 35360

2 29120 33280 35360

3 29120 33280 35360

4 29120 33280 35360

5 29120 33280 35360

6 29120 33280 35360

7 29120 33280 35360

8 29120 33280 35360

9 29120 33280 35360

10 29120 33280 35360

11 29120 33280 35360

12 29120 33280 35360

13 29120 33280 35360

14 29120 33280 35360

15 29120 33280 35360

16 29120 33280 35360

17 29120 33280 35360

18 29120 33280 35360

19 29120 33280 35360

20 29120 33280 35360

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TI
M

E
IN

 M
IC

R
O

SE
C

O
N

D
S

Compression Rate to Time Comparison

50% 25% 12.5%

51

Table 5.6 and Table 5.7 above show that the higher compression rate will make the

compression process complete faster in the Arduino system. The time needed to complete a run

with eight characters output is 29120 microseconds or 0.02912 seconds, which is 0.00416 seconds

faster than 12 character output and 0.00208 seconds faster than 14 character output. These results

show that the effectiveness of 50% compression rate is better than 25% compression rate by

14.28% and 12.5% compression rate by 21.43%. Based on previous data time needed to complete

non compressed input of 16 characters are 146428 microseconds and the maximum compression

rate that is 50% cuts the encryption time down to 137068 microseconds. The conclusion is that

encryption time using RSA with compression is up to 6.39% faster than without compression.

The compression time is also affected by input text. Table 5.8 below shows that using a

random text input makes the program not compressing optimally because of the limitation of the

program in this test. Compressing automatic input is significantly higher than manual input

because the program needs to read random input and append the character that the program could

not be shortened. The Arduino limitation increases the time to process a higher than the input that

is repeated characters. Below is the comparison of manual 12.5% compression rate vs. random

input :

Table 5.8. Compression Time Random vs. Manual Comparison

Test
Compression Time in microseconds

Manual 12.5% Random

1 35360 40188

2 35360 40188

3 35360 40188

4 35360 40188

5 35360 39148

6 35360 40188

7 35360 39148

8 35360 40188

9 35360 40188

10 35360 40188

11 35360 40188

12 35360 40188

13 35360 39148

14 35360 39148

15 35360 39148

16 35360 39148

17 35360 39148

52

18 35360 40188

19 35360 39148

20 35360 40188

MEAN 35360 39772

Table 5.8 shows that using manual input, even with the lowest possible output

compression, is still faster on average than automatic random input. The difference of 0.004412

seconds will add up when compression is combined with encryption, making the total time even

slower than before. Compression time consistency also lowers on random input because every

random input generated got a different compression rate.

