

PROJECT REPORT

SECURE RFID USING DATA ENCRYPTION AND

COMPRESSION ALGORITHM

7

MICHAEL VALENTINO 17.K1.0007

Faculty of Computer Science Soegijapranata Catholic University 2021

S

OPGIJAPR

APPROVAL AND RATIFICATION PAG

HALAMAN PENGESAHAN

Judul Tugas Akhir:	:	Secure RFID Using Data Encryption and Compression Algorithm
Diajukan oleh	:	Michael Valentino I K
NIM	:	17.K1.0007
Tanggal disetujui	•	09 Juli 2021
Telah setujui oleh		SITAS
Pembimbing	•	R. <mark>Setiawan Aji Nugroho S.T., MComp</mark> IT., Ph.D
Penguji 1	F	R. Setiawan Aji Nugroho S.T., MCompIT., Ph.D
Penguji 2		Hironimus Leong S.Kom., M.Kom.
Penguji 3	((Rosita Herawati S.T., M.I.T.
Penguji 4	-	Y.b. Dwi Setianto
Penguji 5	:	Yonathan Purbo Santosa S.Kom., M.Sc
Penguji 6	:	Yulianto Tejo Putranto S.T., M.T.
Ketua Program Studi	:	Rosita Herawati S.T., M.I.T.
Dekan	:	R. Setiawan Aji Nugroho S.T., MCompIT., Ph.D

Halaman ini merupakan halaman yang sah dan dapat diverifikasi melalui alamat di bawah ini. sintak.unika.ac.id/skripsi/verifikasi/?id=17.K1.0007

STATEMENT OF ORIGINALITY

I, the undersigned:

Name : MICHAEL VALENTINO I K

ID : 17.K1.0007

Certify that this project was made by myself and not copy or plagiarize from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizing or copy the other, I am ready to accept a sanction.

APPROVAL PAGE FOR PUBLICATION OF SCIENTIFIC PAPERS FOR ACADEMIC INTEREST

The undersigned below:

Name	: Michael Valentino I K
Undergraduate Program	: TECHNICAL INFORMATION
Faculty	: COMPUTER SCIENCE
Type of Work	: SKRIPSI

S

Approved to give Non-Exclusive Royalty Free Right to Soegijapranata Catholic University Semarang for scientific work entitled **"SECURE RFID USING DATA ENCRYPTION AND COMPRESSION ALGORITHM"** along with the existing tools (if needed). With this Non-Exclusive Royalty Free Right to Soegijapranata Catholic University has the right to store, transfer data / format, manage in the form of a database, maintain and publish this final project as long as I keep my name as a writer / creator and as a Copyright owner.

This statement I made in truth

Semarang, July, 9, 2021 Sincerely

MICHAEL VALENTINO

ACKNOWLEDGMENT

First of all thank you to Jesus Christ for his blessing, that I have received a myriad of support, advice, and assistance throughout working on my final project. I would like to thank my supervisor Robertus Setiawan Aji Nugroho, Ph.D. for formulating this topic. Also, thank you to Arcelina Sukiatmo in whose final project works influence me when writing this documentation.

The final project is a requirement to take the Bachelor of Computer Science exam in the Informatics Engineering Study Program at Soegijapranata Catholic University Semarang.

In the preparation and making of this final project, I got support and encouragement from people around me, I would give my special thanks to :

- 1. My family always support and pray for me while in the making of this final project.
- 2. My Friends, Steven Raymond and Ivan Albern who helped me work on this document.
- 3. And other people that I could not mention the name one by one who also giving support and prays for me when making this final project.

Semarang, July, 9, 2021 Sincerely

MICHAEL VALENTINO

ABSTRACT

RFID cards are commonly used nowadays as a security measure to unlock housing doors, such as apartments or hotels. It works in pairs with an RFID reader to receive the data sent through low-power radio waves from the card. The problem is that the data inside the RFID card could easily read by an RFID reader and possibly read by unauthorized people. The RFID card data security could be improved using encryption and compression algorithm.

This study will compare the encryption using RSA (Rivest-Shamir-Adleman) and AES (Advanced Encryption Standard) algorithms implementation combined with the compression algorithm. Furthermore, time and memory usage is measured in different scenarios of implementation on encryption and compression, which one should put at the first stage than the other. Thus, implement the best solution for encryption and compression in the Arduino environment.

This research concluded that the encryption time of AES is significantly faster than RSA. the test result has shown that AES, on average, is 145768 microseconds faster than RSA in encryption without compression. Also, when tested with compression, AES is 134193.45 microseconds faster than RSA. The AES is better suited for the Arduino UNO system because of the lower computation cost. Also, RSA needs a larger key size to be as safe as AES with a smaller key size. Therefore, AES is better overall than RSA when tested for this project.

Keyword: rfid, arduino, rsa, aes, run-length encoding, encryption, compression

COVER	i
CHAPTER 1 INTRODUCTION	12
1.1. Background	12
1.2. Problem Formulation	13
1.3. Scope	13
1.4. Objective	13
CHAPTER 2 LITERATURE STUDY	14
CHAPTER 3 RESEARCH METHODOLOGY	18
3.1. Rivest-Adleman-Shamir (RSA) Algorithms	18
3.1.1. Key Generation Algorithm :	18
3.1.2. Encryption :	18
3.1.3. Decryption :	19
3.2. Advanced Encryption Standard (AES) Algorithms	19
3.2.1. Adding Round Key	20
3.2.2. Substitutes Bytes	20
3.2.3. Shift Rows	22
3.2.4. Mix Columns	22
3.2.6. AES Encryption and Decryption Flow Diagram	23
3.3. Huffman Encoding	24
3.4. RSA and AES Implementation on Arduino	27
3.5. Modified Huffman Implementation on Arduino	28
3.6. Compare RSA and AES Encryption without Compression Speeds	28
3.7. Compare the RSA and AES Encryption with Compression Speeds	28

TABLE OF CONTENTS

3.8. 7	Testing	28
CHAPTER	4 ANALYSIS AND DESIGN	29
4.1. <i>A</i>	Analysis	29
4.1.1.	RSA, AES, and Modified Huffman Compression in Arduino	29
4.1.2.	MFRC522 RFID Reader and Tag	30
4.1.3.	Encryption and Compression Speed	31
4.2. I	Desain	32
4.2.1.	Data Encryption and Decryption in Arduino	32
4.2.2.	Modified Huffman Compression in Arduino	34
4.2.3.	Complete Arduino Module Scheme	35
CHAPTER	5 IMPLEMENTATION AND TESTING	37
5.1. I	mplementation	37
5.1.1.	Code for Compression (Modified Huffman)	37
5.1.2.	Code for RSA Encryption	39
5.1.3.	Code for AES Encryption	41
5.1.4.	Code for Random Compression	41
5.2. 7	Testing	42
5.2.1.	RSA Encryption Testing without Compression	42
5.2.2.	AES Encryption Testing without Compression	42
5.2.3.	Encryption Time without Compression	43
5.2.4.	Decryption Time without Compression	45
5.2.5.	Combining Encryption with Simple Compression Algorithms	46
5.2.6.	Comparison of RSA and AES with Compression Method	48
5.2.7.	Compression Effectiveness	50

CHAPTER 6 CONCLUSION	53
References	1
APPENDIX	2

LIST OF FIGURE

Figure 3.1 Adding Round Key	9
Figure 3.2 S-box Table	10
Figure 3.3 Substitution Bytes	21
Figure 3.4 Shift Rows	11
Figure 3.5 Mix Columns	12
Figure 3.6 Mix Column Multiplication	12
Figure 3.6 AES Encryption And Decryption Flowchart	13
Figure 3.7 Binary Tree of 'AAAABBBCCCCCD'	15
Figure 4.1 MFR522 Pin Configuration and Description	19
Figure 4.2 MIFARE RFID Tag Memory Construction	20
Figure 4.3 Flowchart of RSA Program	21
Figure 4.4 Flowchart of AES Program	22
Figure 4.5 Flowchart of Modified Huffman Program	23
Figure 4.6 Complete Arduino Module Scheme	24
Figure 5.1 Compression Test 1 Using Paragraph Input	35
Figure 5.2 Compression Test 2 Using Paragraph Input	36
Figure 5.3 Simple Diagram of Run Length Encoding	36

LIST OF TABLE

Table 5.1. RSA Encryption Testing Comparison	31
Table 5.2. AES Encryption Testing Comparison	32
Table 5.3. RSA and AES Encryption Time Comparison	32
Table 5.4. RSA and AES Decryption Time Comparison	34
Table 5.5. AES and RSA with Compression Comparison	37

