
19

IMPLEMENTATION AND TESTING

5.1 Implementation

The project utilizes Python code as its main programming language, the

reason is Python is very practical in data science field, easier and more popular

among data scientist compared to other language such as Java and C++ that may

need more code definition, class, etc. just for the data preprocessing. This in fact

can save a lot of time for implementation.

In every data science related field data preprocessing is a very serious thing

that must be done firsthand before continuing the work, pre – processing will show

all the possibilities so that we know how the dataset should behave and modeled

according to our needs for the project as mentioned in Chapter 4.

20

xx

Average User rated a movie differently for one user to another, in this page

the average rating and number of movies rated by each user is calculated with a

group by clause just like in database to show how many movies rated by the users

and what is the average ratings of rated movies.

Figure 5.1.1 Data Pre-Processing

21

xxi

In this figure we see from above we can conclude that the most given ratings

the rating average is about 3.5, the second group of user’s voted about 3 to 3.5 and

the least or fewest group of users throw a score of 1 and less than 2 for the given

record.

In the implementation stage movie genre is also one of the main factor a

recommender engine is created, even though the fucus of this project will be the

algorithm it is worth mentioning that genre chart also play an important role for the

Figure 5.1.2 Average User's rating

22

xxii

algorithm or method to perform with the expected or unexpected result,

remember this project is a measurement between two algorithms so similar or not

similar result may be happening.

Figure 5.1.3 Tag / genre Pie Chart

23

xxiii

In the above chart we can see that Netflix queue have the highest number of

tag that is yet to be determined, this is a good picture of how the recommender

system will behave based on the provided data from the csv files.

Genre in each movie is very crucial thing and will affect the recommender

as a whole so I decided to count every genre inside the dataset

In the above image the first code initiate genre as an empty variable and the

next row it count the rows in movies dataset to be counted along with the nested for

Figure 5.1.4 Count the number of genre

24

xxiv

loop statement to count the genre and the output will be how many movies are

‘Adventure’, ‘Drama’, ‘Romance’, ‘Horror’, etc. and the movie that have no genres.

It is a lot of genres.

The following bar chart best explain the current condition of dataset

regarding the genres being the most watched and the least.

 The most watched movies based on this plotted data is ‘Drama’, the second

favorite is in the place of ‘Comedy’ and the least favorite genre is IMAX with the

score of 197 movie count.

 In a Recommender System usually there is a pivot table of movies name and

a genre on the top rows to confirm the property of the movie. A pivot table by

definition is a grouped values that aggregates the individual items of a more

extensive table within one or more discrete categories. The summary can include

sums, average, or more statistics.

Figure 5.1.5 Genre of watched movies

25

xxv

Figure 5.1.6 Pivot Table Genre

Here we can see how the movie can be confirmed for its genre easily by

visually checking is this movie matched with this genre or not for example if Toy

Story a funny movie? The answer is yes, then it matched the Comedy Segment, if

it is a fantasy movie it will also match the fantasy category along with many more

category and the matched category will show a Boolean value of 1 and the

unmatched category will show 0 this is the whole picture of a pivot table for genre

classification.

26

xxvi

This is a function used to find rating, movieId, and most importantly movie

title of the movies that are watched by a specific user.

Figure 5.1.7 Get Movie Title

27

xxvii

Figure 5.1.8 Movie Title watched by users

28

xxviii

This is an example of getting a movie title from userId (11) and seeing what

kinds of movie these users have watched or rated that can be used to get information

about the recommender system.

The Figure above show how Euclidean Distance Algorithm is implemented

there will be an explanation on how each line of statement really work in the next

paragraph.

Figure 5.1.9 Euclidean Distance

29

xxix

The first line is defining the function for Euclidean Distance Algorithm.

Next part is where its method is used to separate rating into two group that on later

writing will be called rating_x and rating_y. This part is where we merge df_first

and df_second into a single dataframe for processing on movieId. This part throws

a conditional statement stating if there is no similar user’s during looping of

dataframe then the code can return 0 or continue to run until a value is found.

Meanwhile on the next part if the len() or length of dataframe is 0 then the code will

return 0. Calculation is done for this part below is a calculation of Euclidean

distance that is the sum of squared difference between ratings. More detailed

overwiew of the code will be explained below the code

The code below is the implementation code of Euclidean Distance and

Manhattan Distance and there will be more explanation below the printed code and

some testing.

Hashtags (#) are used for commenting a code in python for debugging /

review process in case we forget what the code does.

FORMULA HERE

Euclidean Distance code

1. def euclidean_distance(user1,user2):

2. # Getting details of person 1 and person 2

3. df_first=

ratings.loc[ratings['userId']==user1]

4. df_second= ratings.loc[ratings.userId==user2]

5. # finding similar movies for person 1 and 2

LATER THIS WILL BE

6. # seperrated by rating_x and rating_y

7. df=

pd.merge(df_first,df_second,how='inner',on='movieId')

8. # if no similar movie are found, return 0 (NO

SIMILARITY)

9. if(len(df)==0): return 0

10. # sum of squared difference between ratings

30

xxx

11. distance=pow((df['rating_x']-

df['rating_y']),2)

12. total_euclidean = sum(distance)

13. return 1/(1+total_euclidean)

Code Explanation Line 1 is defining the function for Euclidean Distance

Algorithm. Line 3 and 4 is used to separate rating into two group that on later

writing will be called rating_x and rating_y. Line 7 is to merge df_first and

df_second into a single dataframe for processing on movieId. Line 8 is a conditional

statement stating if there is no similar user’s during looping of dataframe then the

code can return 0 or continue to run until a value is found. Meanwhile on Line 9 if

the len or length of dataframe is 0 then the code will return 0. Line 10 and below is

a calculationh of euclidean distance that is the sum of squared difference between

ratings. Line 11 define distance and counting rating_x – rating_y and then squared,

Line 12 adds the sum of distance and finnaly Line 13 computed a returned result of

1/(1+total_euclidean) this formula is needed to return a result between -1 and 1 but

since any value less than 0 is discarded then this calculation is expected to return a

value between 0 and 1 and for easeir readabilty we can also say that the distance

between user x and user y is between 0 and 100 % but the result will be returned

in a decimal value.

Here is the initial test result of the above code, simple testing is needed to

make sure the algorithm specified run well with the input and the test result shows

some of the best expected result. This result will be compared with manhattan

distance and see wheter they are very close, very far, similar or identical or not

similar at all.

Expected Output : Between 0 and 1 Float values between userId’s

INTEGER Values.

Test 1 : print(euclidean_distance_score(1,9))

31

xxxi

Output : 0.5

Test 2 : print(euclidean_distance_score(1,310)

Output : 0.06060606060606061

Test 3 : euclidean_distance_score(11,41)

Output : 0.023121387283236993

Test 4 : euclidean_distance_score(61,89)

Output : 0.13793103448275862

Figure 5.1.9.a Most Similar User Euclidean Distance

Searching through all of Euclidean distance function the most similar

movies. The code runs on the else clause so this is different than Manhattan metric.

32

xxxii

Figure 5.1.9.b Get Recommendation Euclidean Distance

The code above shows how to iterate through user ID and count the

Euclidean distance in order to get the movie recommended appeared in the next

dialog box or dataframe.

33

xxxiii

Figure 5.1.9.c Recommended movie list Euclidean

The above code is an example of how the movie is recommended to the

specific userID.

34

xxxiv

Figure 5.1.10 Manhattan Distance

The Figure above show how Manhattan Distance Algorithm is implemented

there will be an explanation on how each line of statement really work in the next

paragraph.

35

xxxv

The code for Manhattan Distance

1. def manhattan_distance(user1,user2):

2. df_first= ratings.loc[ratings['userId']==user1]

3. df_second= ratings.loc[ratings.userId==user2]

4. # finding similar movies for user1 and user2 LATER
THIS WILL BE

5. # seperrated by rating_x and rating_y

6.
pd.merge(df_first,df_second,how='inner',on='movieId'

)

7. # if no similar movie are found, return 0 (NO
SIMILARITY)

8. if(len(df)==0): return 0

9. # The Manhattan Distance

10. sum1_square = sum(df['rating_x'])

11. sum2_square = sum(df['rating_y'])

12. sum_absolute=sum((abs(df['rating_x']-

df['rating_y'])))

13. return 1/(1+sum_absolute) # returning a

value between 0 1 and 1

14. manhattan_score(1,21) # comparison between user 1

and 21

Illustration 5.1.11 Manhattan DIstance Formula

36

xxxvi

Code Explanation Line 1 is defining the function for Manhattan Distance

Algorithm. Line 2 and 3 is used to separate rating into two group that on later

writing will be called rating_x and rating_y. Line 6 is to merge df_first and

df_second into a single dataframe for processing on movieId. Line 8 is a conditional

statement stating if there is no similar user’s during looping of dataframe then the

code can return 0 or continue to run until a value is found. Meanwhile on Line 9 if

the len or length of dataframe is 0 then the code will return 0. Line 9 is the actual

Manhattan Distance code evaluation. Line 10 and 11 is to count the sum of rating_x

and rating_y somehow the code won’t execute without this declaration of sum. Line

12 is used to count the absolute value of df[‘rating_x’] - df[‘rating_y’]. Line 13 is

used to make sure whatever the value is it will be between 0 and 1 because absolute

keyword already in place.

Here is the initial test result of the above code, simple testing is needed to

make sure the algorithm specified run well with the input and the test result shows

some of the best expected result. This result will be compared with manhattan

distance and see wheter they are very close, very far, similar or identical or not

similar at all.

Expected Output : Between 0 and 1 float value

Output Line 16 : 0.020202020202020204

37

xxxvii

Figure 5.1.11 Most Similar User Manhattan

Searching through all of Manhattan_distance function the most similar

movies.

38

xxxviii

Figure 5.1.12 get recommendation

39

xxxix

Figure 5.1.13 recommended movie returned manhattan

5.2 Testing

Testing for this program is making sure the code supplied is working as

inteded, and also a test of the algorithm’s performance, score based on the data

structure supplied which is the movilens dataset. Testing also conduct an analyzsis

of whether a userID can return a list of recommended movie and how they correlate

with each other in terms of distance such as euclidean distances and the proposed

40

xl

manhattan distance calculation, see how far the a particular user is from the other

supplied user.

Testing the Algorithm with Manhattan distance to see the similarity between

user x and user y, x and y will be the UserID to be identified during the execution

of the program.

Here is how the program are being tested. Firstly, I will demonstate how

Euclidean Distance performs for 2 user’s then Secondly I will demonstrate how

Manhattan Distance will returns an output the same way as Euclidean Distance

score, is it the same, far away or very close to each other similarity is close enough.

The Final Step would be to check which movie is recommended to which users for

example user 1 may get a recommendation of ‘Finding Dory’ while user 2 may get

‘Ice Age’ this is done in the getRecommendation function at the end of the program.

The expected result will be a range of 1 and 0 as mentioned in Chapter 3

Activation Function. This formula is needed to compare how the two algorithm will

perform and their score, if I chose to not include this function in the code will result

a confusion on how the score behave, that is why a standardized metric of activation

function in this case is a heuristic function to return a range 0 until 1 is needed. In

my code activation function for each algorithm is represented as return 1 / (1 +

sum_of_squares).

Here is the tesing result of the code.

Test 1: print(euclidean_distance_score(1,9))

Output: 0.5

Explanation: Here we see that the euclidean

distance between user 1 and user 9 is 0.5 meaning they

are 50% similar

41

xli

Test 2: euclidean_distance(1,21)

Output: 0.011940298507462687

Explanation: Here we see that the euclidean

distance between user 1 and user 21 is 0.0119 meaning

they are 1% similarity or not similar at all.

Test 3: euclidean_distance(1,310)

Output: 0.06060606060606061

Explanation: Here we see that the euclidean

distance between user 1 and user 310 is 0.0606 meaning

they are 6% similar in distance.

Test 4: euclidean_distance(11,41)

Output: 0.023121387283236993

Explanation: Here we see that the euclidean

distance between user 11 and user 41 is 0.0231 meaning

they are 2% similar

Test 5: euclidean_distance(61,89)

Output: 0.13793103448275862

Explanation: Here we see that the euclidean

distance between user 61 and user 89 is 0.1379 meaning

they are 13% similar

42

xlii

Test 6: euclidean_distance(23,86)

Output: 1.0

Explanation: Here we see that the euclidean

distance between user 23 and user 86 is 1.0 meaning they

are 100% similar meaning they have the same rating type

of movie most of the time that they can score 100%

similarity score

Test 7: euclidean_distance(1,85)

Output: 1.0

Explanation: Here we see that the euclidean

distance between user 1 and user 85 is 1.0 meaning they

are 100% similar meaning they have the same rating type

of movie most of the time that they are able to score

100% similarity score

Test 8: euclidean_distance(1,77)

Output: 1.0

Explanation: Here we see that the euclidean

distance between user 1 and user 77 is 1.0 meaning they

are 100% similar meaning they have the same rating type

of movie most of the time that they are able to score

100% similarity score

Test 9: euclidean_distance(1,53)

Output: 0.5

43

xliii

Explanation: Here we see that the euclidean

distance between user 1 and user 53 is 0.5 meaning they

are 50% similar

Test 10: euclidean_distance(1,44)

Output: 0.06666666666666667

Explanation: Here we see that the euclidean

distance between user 1 and user 44 is 0.0666 meaning

they are about 6% similar

Test 1: manhattan_distance(1,9)

Output: 0.5

Explanation: Here we see that the manhattan

distance between user 1 and user 9 is 0.5 meaning they

are 50% similar

Test 2: manhattan_distance(1,21)

Output: 0.020202020202020204

Explanation: Here we see that the manhattan

distance between user 1 and user 21 is 0.0202 meaning

they are 2% similarity or not similar at all a little

higher score than Euclidean distance.

44

xliv

Test 3: manhattan_distance(1,310)

Output: 0.1

Explanation: Here we see that the manhattan

distance between user 1 and user 310 is 0.1 meaning they

are 10% similar in distance.

Test 4: manhattan_distance(11,41)

Output: 0.06060606060606061

Explanation: Here we see that the manhattan

distance between user 11 and user 41 is 0.0606 meaning

they are 6% similar

Test 5: manhattan_distance(61,89)

Output: 0.2857142857142857

Explanation: Here we see that the manhattan

distance between user 61 and user 89 is 0.2857 meaning

they are 28% similar, higher score is achieved on

Manhattan distance metric.

Test 6: manhattan_distance(23,86)

Output: 1.0

Explanation: Here we see that the manhattan

distance between user 23 and user 86 is 1.0 meaning they

are 100% similar meaning they have the same rating type

45

xlv

of movie most of the time that they are able to score

100% similarity score

Test 7: manhattan_distance(1,85)

Output: 1.0

Explanation: Here we see that the manhattan

distance between user 1 and user 85 is 1.0 meaning they

are 100% similar meaning they have the same rating type

of movie most of the time that they are able to score

100% similarity score

Test 8: manhattan_distance(1,77)

Output: 1.0

Explanation: Here we see that the manhattan

distance between user 1 and user 77 is 1.0 meaning they

are 100% similar meaning they have the same rating type

of movie most of the time that they are able to score

100% similarity score

Test 9: manhattan_distance(1,53)

Output: 0.5

Explanation: Here we see that the manhattan

distance between user 1 and user 53 is 0.5 meaning they

are 50% similar

Test 10: manhattan_distance(1,44)

46

xlvi

Output: 0.09090909090909091

Explanation: Here we see that the manhattan

distance between user 1 and user 44 is 0.0909 meaning

they are 9% similar

Table 5.2 Comparison Table of 100,836 records

Comparison of distance metric

User ID Euclidean Distance Manhattan Distance

User 1 & User 9 0.5 0.5

User 1 & User 21 0.011940298507462687 0.13793103448275862

User 1 & User 310 0.06060606060606061 0.1

User 11 & User 41 0.023121387283236993 0.06060606060606061

User 61 & User 89 0.13793103448275862 0.2857142857142857

User 23 & User 86 1. 0 1.0

User 1 & User 85 1.0 1.0

User 1 & User 77 1.0 1.0

User 1 & User 53 0.5 0.5

User 1 & User 44 0.06666666666666667 0.09090909090909091

The above table is the same record mentioned in Chapter 4 regarding

comparison of a distance between 2 user’s in 2 different metric and with that many

record it shows that Manhattan distance produce higher score than Euclidean

distance.

 Below here I will compare the algorithm with fewer ratings at about 200

record and will make a statement on whether Manhattan is better or Euclidean

perform better result or returned a higher score.

47

xlvii

Comparison of distance metric

User ID Euclidean Distance Manhattan Distance

User 1 & User 85 0 0

User 1 & User 21 0 0

User 85 & User 77 0 0

User 11 & User 41 0 0

User 1 & User 77 1.0 1.0

User 1 & User 44 0 0

User 1 & User 114 0.076923076923077 0.4

The above result is coded in a file named Skripsi_Euclidean1.ipynb and

Sripsi_Manhattan1.ipynb in this file the most rated movies from the narrowed

down version of this ratings and the movie that rated the most is “Star Wars:

Episode IV – A New Hope (1997)” with the ratings given by 15 users.

Table 3 Most rated movies including Star Wars:Episode IV - A New Hope

1997

title

Star Wars: Episode IV - A New Hope (1977) 15

Dumb & Dumber (Dumb and Dumber) (1994) 4

Die Hard: With a Vengeance (1995) 3

Toy Story (1995) 3

Star Wars: Episode V - The Empire Strikes Back (1980) 2

Birdcage, The (1996) 2

Happy Gilmore (1996) 2

Dances with Wolves (1990) 2

Star Wars: Episode VI - Return of the Jedi (1983) 2

Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981) 2

Independence Day (a.k.a. ID4) (1996) 2

Jurassic Park (1993) 2

Pulp Fiction (1994) 2

Down Periscope (1996) 2

48

xlviii

Twelve Monkeys (a.k.a. 12 Monkeys) (1995) 2

Mission: Impossible (1996) 2

Forrest Gump (1994) 2

Shawshank Redemption, The (1994) 2

Apollo 13 (1995) 2

Prelude to a Kiss (1992) 1

Romeo and Juliet (1968) 1

Remains of the Day, The (1993) 1

Rain Man (1988) 1

Saving Grace (2000) 1

Saving Private Ryan (1998) 1

dtype: int64

This is a comparison of Euclidean distance and Manhattan distance without

star wars : Episode IV – A New Hope (1997)

Comparison of distance metric

User ID Euclidean Distance Manhattan Distance

User 1 & User 85 0 0

User 1 & User 21 0 0

User 85 & User 77 0 0

User 11 & User 41 0 0

User 1 & User 77 0.5 0.5

User 1 & User 44 0 0

User 1 & User 114 0.2857142857142857 0.3333333333333333

In the above table we can see that in terms of accuracy the Manhattan

distance performs significantly better and produce higher result even though some

user similarity become 0 when Star Wars : Episode IV – A New Hope (1997) is

removed and the ratings changed to other movies recorded in the dataframe.

