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IMPLEMENTATION AND TESTING 

5.1 Implementation 

The project utilizes Python code as its main programming language, the 

reason is Python is very practical in data science field, easier and more popular 

among data scientist compared to other language such as Java and C++ that may 

need more code definition, class, etc. just for the data preprocessing. This in fact 

can save a lot of time for implementation. 

In every data science related field data preprocessing is a very serious thing 

that must be done firsthand before continuing the work, pre – processing will show 

all the possibilities so that we know how the dataset should behave and modeled 

according to our needs for the project as mentioned in Chapter 4. 
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Average User rated a movie differently for one user to another, in this page 

the average rating and number of movies rated by each user is calculated with a 

group by clause just like in database to show how many movies rated by the users 

and what is the average ratings of rated movies. 

 

Figure 5.1.1 Data Pre-Processing 
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In this figure we see from above we can conclude that the most given ratings 

the rating average is about 3.5, the second group of user’s voted about 3 to 3.5 and 

the least or fewest group of users throw a score of 1 and less than 2 for the given 

record. 

In the implementation stage movie genre is also one of the main factor a 

recommender engine is created, even though the fucus of this project will be the 

algorithm it is worth mentioning that genre chart also play an important role for the  

 

Figure 5.1.2 Average User's rating 
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algorithm or method to perform with the expected or unexpected result, 

remember this project is a measurement between two algorithms so similar or not 

similar result may be happening. 

 

Figure 5.1.3 Tag / genre Pie Chart 

 

 



23 

xxiii 

In the above chart we can see that Netflix queue have the highest number of 

tag that is yet to be determined, this is a good picture of how the recommender 

system will behave based on the provided data from the csv files. 

 

Genre in each movie is very crucial thing and will affect the recommender 

as a whole so I decided to count every genre inside the dataset 

 

In the above image the first code initiate genre as an empty variable and the 

next row it count the rows in movies dataset to be counted along with the nested for 

 

Figure 5.1.4 Count the number of genre 
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loop statement to count the genre and the output will be how many movies are 

‘Adventure’, ‘Drama’, ‘Romance’, ‘Horror’, etc. and the movie that have no genres. 

It is a lot of genres. 

The following bar chart best explain the current condition of dataset 

regarding the genres being the most watched and the least. 

 

 The most watched movies based on this plotted data is ‘Drama’, the second 

favorite is in the place of ‘Comedy’ and the least favorite genre is IMAX with the 

score of 197 movie count. 

 In a Recommender System usually there is a pivot table of movies name and 

a genre on the top rows to confirm the property of the movie. A pivot table by 

definition is a grouped values that aggregates the individual items of a more 

extensive table within one or more discrete categories. The summary can include 

sums, average, or more statistics. 

 

Figure 5.1.5 Genre of watched movies 
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Figure 5.1.6 Pivot Table Genre 

 

Here we can see how the movie can be confirmed for its genre easily by 

visually checking is this movie matched with this genre or not for example if Toy 

Story a funny movie? The answer is yes, then it matched the Comedy Segment, if 

it is a fantasy movie it will also match the fantasy category along with many more 

category and the matched category will show a Boolean value of 1 and the 

unmatched category will show 0 this is the whole picture of a pivot table for genre 

classification. 
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This is a function used to find rating, movieId, and most importantly movie 

title of the movies that are watched by a specific user. 

 

Figure 5.1.7 Get Movie Title 
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Figure 5.1.8 Movie Title watched by users 
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This is an example of getting a movie title from userId (11) and seeing what 

kinds of movie these users have watched or rated that can be used to get information 

about the recommender system. 

 

 

 

The Figure above show how Euclidean Distance Algorithm is implemented 

there will be an explanation on how each line of statement really work in the next 

paragraph. 

 

Figure 5.1.9 Euclidean Distance 
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The first line is defining the function for Euclidean Distance Algorithm. 

Next part is where its method is used to separate rating into two group that on later 

writing will be called rating_x and rating_y. This part is where we merge df_first 

and df_second into a single dataframe for processing on movieId. This part throws 

a conditional statement stating if there is no similar user’s during looping of 

dataframe then the code can return 0 or continue to run until a value is found. 

Meanwhile on the next part if the len() or length of dataframe is 0 then the code will 

return 0. Calculation is done for this part below is a calculation of Euclidean 

distance that is the sum of squared difference between ratings. More detailed 

overwiew of the code will be explained below the code 

The code below is the implementation code of Euclidean Distance and 

Manhattan Distance and there will be more explanation below the printed code and 

some testing. 

Hashtags (#) are used for commenting a code in python for debugging / 

review process in case we forget what the code does. 

FORMULA HERE 

Euclidean Distance code 

1. def euclidean_distance(user1,user2): 

2.     # Getting details of person 1 and person 2 

3.     df_first= 

ratings.loc[ratings['userId']==user1] 

4.     df_second= ratings.loc[ratings.userId==user2] 

5.     # finding similar movies for person 1 and 2 

LATER THIS WILL BE 

6.     # seperrated by rating_x and rating_y 

 

7.     df= 

pd.merge(df_first,df_second,how='inner',on='movieId') 

 

8.     # if no similar movie are found, return 0 (NO 

SIMILARITY) 

9.     if(len(df)==0): return 0 

10.     # sum of squared difference between ratings 
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11.     distance=pow((df['rating_x']-

df['rating_y']),2) 

12.     total_euclidean = sum(distance) 

13.     return 1/(1+total_euclidean) 

 

Code Explanation Line 1 is defining the function for Euclidean Distance 

Algorithm. Line 3 and 4 is used to separate rating into two group that on later 

writing will be called rating_x and rating_y. Line 7 is to merge df_first and 

df_second into a single dataframe for processing on movieId. Line 8 is a conditional 

statement stating if there is no similar user’s during looping of dataframe then the 

code can return 0 or continue to run until a value is found. Meanwhile on Line 9 if 

the len or length of dataframe is 0 then the code will return 0. Line 10 and below is 

a calculationh of euclidean distance that is the sum of squared difference between 

ratings. Line 11 define distance and counting rating_x – rating_y and then squared, 

Line 12 adds the sum of distance and finnaly Line 13 computed a returned result of 

1/(1+total_euclidean) this formula is needed to return a result between -1 and 1 but 

since any value less than 0 is discarded then this calculation is expected to return a 

value between 0 and 1 and for easeir readabilty we can also say that the distance 

between user x and user y is between 0 and 100 %  but the result will be returned 

in a decimal value. 

 

Here is the initial test result of the above code, simple testing is needed to 

make sure the algorithm specified run well with the input and the test result shows 

some of the best expected result. This result will be compared with manhattan 

distance and see wheter they are very close, very far, similar or identical or not 

similar at all. 

Expected Output : Between 0 and 1 Float values between userId’s 

INTEGER Values. 

Test 1 : print(euclidean_distance_score(1,9)) 
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Output :   0.5 

Test 2 : print(euclidean_distance_score(1,310) 

Output : 0.06060606060606061 

Test 3 : euclidean_distance_score(11,41) 

Output : 0.023121387283236993 

Test 4 : euclidean_distance_score(61,89) 

Output : 0.13793103448275862 

 

Figure 5.1.9.a Most Similar User Euclidean Distance 

 

Searching through all of Euclidean distance function the most similar 

movies. The code runs on the else clause so this is different than Manhattan metric. 
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Figure 5.1.9.b Get Recommendation Euclidean Distance 

The code above shows how to iterate through user ID and count the 

Euclidean distance in order to get the movie recommended appeared in the next 

dialog box or dataframe. 
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Figure 5.1.9.c Recommended movie list Euclidean 

 

The above code is an example of how the movie is recommended to the 

specific userID. 
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Figure 5.1.10 Manhattan Distance 

The Figure above show how Manhattan Distance Algorithm is implemented 

there will be an explanation on how each line of statement really work in the next 

paragraph. 
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The code for Manhattan Distance 

 

1. def manhattan_distance(user1,user2): 

2.     df_first= ratings.loc[ratings['userId']==user1] 

3.     df_second= ratings.loc[ratings.userId==user2] 

4.     # finding similar movies for user1 and user2 LATER 
THIS WILL BE 

5.     # seperrated by rating_x and rating_y 

6.      
pd.merge(df_first,df_second,how='inner',on='movieId'

) 

7.      # if no similar movie are found, return 0 (NO 
SIMILARITY) 

8.     if(len(df)==0): return 0 

9.     # The Manhattan Distance 

10.     sum1_square = sum(df['rating_x']) 

11.     sum2_square = sum(df['rating_y']) 

12. sum_absolute=sum((abs(df['rating_x']-

df['rating_y']))) 

13.     return 1/(1+sum_absolute) #     returning a 

value between 0 1 and 1 

14. manhattan_score(1,21) # comparison between user 1 

and 21 

 

Illustration 5.1.11 Manhattan DIstance Formula 
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Code Explanation Line 1 is defining the function for Manhattan Distance 

Algorithm. Line 2 and 3 is used to separate rating into two group that on later 

writing will be called rating_x and rating_y. Line 6 is to merge df_first and 

df_second into a single dataframe for processing on movieId. Line 8 is a conditional 

statement stating if there is no similar user’s during looping of dataframe then the 

code can return 0 or continue to run until a value is found. Meanwhile on Line 9 if 

the len or length of dataframe is 0 then the code will return 0. Line 9 is the actual 

Manhattan Distance code evaluation. Line 10 and 11 is to count the sum of rating_x 

and rating_y somehow the code won’t execute without this declaration of sum. Line 

12 is used to count the absolute value of df[‘rating_x’] - df[‘rating_y’].  Line 13 is 

used to make sure whatever the value is it will be between 0 and 1 because absolute 

keyword already in place. 

 

 

 

Here is the initial test result of the above code, simple testing is needed to 

make sure the algorithm specified run well with the input and the test result shows 

some of the best expected result. This result will be compared with manhattan 

distance and see wheter they are very close, very far, similar or identical or not 

similar at all. 

Expected Output : Between 0 and 1 float value 

Output Line 16 : 0.020202020202020204 
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Figure 5.1.11 Most Similar User Manhattan 

Searching through all of Manhattan_distance function the most similar 

movies. 
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Figure 5.1.12 get recommendation 
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Figure 5.1.13 recommended movie returned manhattan 

 

5.2 Testing 

Testing for this program is making sure the code supplied is working as 

inteded, and also a test of the algorithm’s performance, score based on the data 

structure supplied which is the movilens dataset. Testing also conduct an analyzsis 

of whether a userID can return a list of recommended movie and how they correlate 

with each other in terms of distance such as euclidean distances and the proposed 
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manhattan distance calculation, see how far the a particular user is from the other 

supplied user. 

 

Testing the Algorithm with Manhattan distance to see the similarity between 

user x and user y, x and y will be the UserID to be identified during the execution 

of the program. 

Here is how the program are being tested. Firstly, I will demonstate how 

Euclidean Distance performs for 2 user’s then Secondly I will demonstrate how 

Manhattan Distance will returns an output the same way as Euclidean Distance 

score, is it the same, far away or very close to each other similarity is close enough. 

The Final Step would be to check which movie is recommended to which users for 

example user 1 may get a recommendation of ‘Finding Dory’ while user 2 may get 

‘Ice Age’ this is done in the getRecommendation function at the end of the program. 

The expected result will be a range of 1 and 0 as mentioned in Chapter 3 

Activation Function. This formula is needed to compare how the two algorithm will 

perform and their score, if I chose to not include this function in the code will result 

a confusion on how the score behave, that is why a standardized metric of activation 

function in this case is a heuristic function to return a range 0 until 1 is needed. In 

my code activation function for each algorithm is represented as return 1 / (1 + 

sum_of_squares). 

 

Here is the tesing result of the code. 

Test 1: print(euclidean_distance_score(1,9)) 

Output:   0.5 

Explanation: Here we see that the euclidean 

distance between user 1 and user 9 is 0.5 meaning they 

are 50% similar 
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Test 2: euclidean_distance(1,21) 

Output: 0.011940298507462687 

Explanation: Here we see that the euclidean 

distance between user 1 and user 21 is 0.0119 meaning 

they are 1% similarity or not similar at all. 

 

Test 3: euclidean_distance(1,310) 

Output: 0.06060606060606061 

Explanation: Here we see that the euclidean 

distance between user 1 and user 310 is 0.0606 meaning 

they are 6% similar in distance. 

 

Test 4: euclidean_distance(11,41) 

Output: 0.023121387283236993 

Explanation: Here we see that the euclidean 

distance between user 11 and user 41 is 0.0231 meaning 

they are 2% similar 

 

Test 5: euclidean_distance(61,89) 

Output: 0.13793103448275862 

Explanation: Here we see that the euclidean 

distance between user 61 and user 89 is 0.1379 meaning 

they are 13% similar 
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Test 6: euclidean_distance(23,86) 

Output: 1.0 

Explanation: Here we see that the euclidean 

distance between user 23 and user 86 is 1.0 meaning they 

are 100% similar meaning they have the same rating type 

of movie most of the time that they can score 100% 

similarity score 

 

Test 7: euclidean_distance(1,85) 

Output: 1.0 

Explanation: Here we see that the euclidean 

distance between user 1 and user 85 is 1.0 meaning they 

are 100% similar meaning they have the same rating type 

of movie most of the time that they are able to score 

100% similarity score 

 

Test 8: euclidean_distance(1,77) 

Output: 1.0 

Explanation: Here we see that the euclidean 

distance between user 1 and user 77 is 1.0 meaning they 

are 100% similar meaning they have the same rating type 

of movie most of the time that they are able to score 

100% similarity score 

 

Test 9: euclidean_distance(1,53) 

Output: 0.5 
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Explanation: Here we see that the euclidean 

distance between user 1 and user 53 is 0.5 meaning they 

are 50% similar  

 

Test 10: euclidean_distance(1,44) 

Output: 0.06666666666666667 

Explanation: Here we see that the euclidean 

distance between user 1 and user 44 is 0.0666 meaning 

they are about 6% similar  

 

 

 

Test 1: manhattan_distance(1,9) 

Output: 0.5 

Explanation: Here we see that the manhattan 

distance between user 1 and user 9 is 0.5 meaning they 

are 50% similar 

 

 

Test 2: manhattan_distance(1,21) 

Output: 0.020202020202020204 

Explanation: Here we see that the manhattan 

distance between user 1 and user 21 is 0.0202 meaning 

they are 2% similarity or not similar at all a little 

higher score than Euclidean distance. 
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Test 3: manhattan_distance(1,310) 

Output: 0.1 

Explanation: Here we see that the manhattan 

distance between user 1 and user 310 is 0.1 meaning they 

are 10% similar in distance. 

 

Test 4: manhattan_distance(11,41) 

Output: 0.06060606060606061 

Explanation: Here we see that the manhattan 

distance between user 11 and user 41 is 0.0606 meaning 

they are 6% similar 

 

Test 5: manhattan_distance(61,89) 

Output: 0.2857142857142857 

Explanation: Here we see that the manhattan 

distance between user 61 and user 89 is 0.2857 meaning 

they are 28% similar, higher score is achieved on 

Manhattan distance metric. 

 

Test 6: manhattan_distance(23,86) 

Output: 1.0 

Explanation: Here we see that the manhattan 

distance between user 23 and user 86 is 1.0 meaning they 

are 100% similar meaning they have the same rating type 
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of movie most of the time that they are able to score 

100% similarity score 

 

Test 7: manhattan_distance(1,85) 

Output: 1.0 

Explanation: Here we see that the manhattan 

distance between user 1 and user 85 is 1.0 meaning they 

are 100% similar meaning they have the same rating type 

of movie most of the time that they are able to score 

100% similarity score 

 

Test 8: manhattan_distance(1,77) 

Output: 1.0 

Explanation: Here we see that the manhattan 

distance between user 1 and user 77 is 1.0 meaning they 

are 100% similar meaning they have the same rating type 

of movie most of the time that they are able to score 

100% similarity score 

 

Test 9: manhattan_distance(1,53) 

Output: 0.5 

Explanation: Here we see that the manhattan 

distance between user 1 and user 53 is 0.5 meaning they 

are 50% similar  

 

Test 10: manhattan_distance(1,44) 
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Output: 0.09090909090909091 

 

Explanation: Here we see that the manhattan 

distance between user 1 and user 44 is 0.0909 meaning 

they are 9% similar  

 

 

Table 5.2 Comparison Table of 100,836 records 

Comparison of distance metric 

User ID Euclidean Distance Manhattan Distance 

User 1 & User 9 0.5  0.5  

User 1 & User 21 0.011940298507462687 0.13793103448275862 

User 1 & User 310 0.06060606060606061 0.1 

User 11 & User 41 0.023121387283236993 0.06060606060606061 

User 61 & User 89 0.13793103448275862 0.2857142857142857 

User 23 & User 86 1. 0 1.0 

User 1 & User 85 1.0 1.0 

User 1 & User 77 1.0 1.0 

User 1 & User 53 0.5 0.5 

User 1 & User 44 0.06666666666666667 0.09090909090909091 

The above table is the same record mentioned in Chapter 4 regarding 

comparison of a distance between 2 user’s in 2 different metric and with that many 

record it shows that Manhattan distance produce higher score than Euclidean 

distance. 

 Below here I will compare the algorithm with fewer ratings at about 200 

record and will make a statement on whether Manhattan is better or Euclidean 

perform better result or returned a higher score. 
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Comparison of distance metric 

User ID Euclidean Distance Manhattan Distance 

User 1 & User 85 0 0 

User 1 & User 21 0 0 

User 85 & User 77 0 0 

User 11 & User 41 0 0 

User 1 & User 77 1.0 1.0 

User 1 & User 44 0 0 

User 1 & User 114 0.076923076923077 0.4 

 

 

The above result is coded in a file named Skripsi_Euclidean1.ipynb and 

Sripsi_Manhattan1.ipynb in this file  the most rated movies from the narrowed 

down version of this ratings and the movie that rated the most is  “Star Wars: 

Episode IV – A New Hope (1997)” with the ratings given by 15 users. 

Table 3 Most rated movies including Star Wars:Episode IV - A New Hope 

1997 

title 

Star Wars: Episode IV - A New Hope (1977)                                         15 

Dumb & Dumber (Dumb and Dumber) (1994)                                             4 

Die Hard: With a Vengeance (1995)                                                  3 

Toy Story (1995)                                                                   3 

Star Wars: Episode V - The Empire Strikes Back (1980)                              2 

Birdcage, The (1996)                                                               2 

Happy Gilmore (1996)                                                               2 

Dances with Wolves (1990)                                                          2 

Star Wars: Episode VI - Return of the Jedi (1983)                                  2 

Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)     2 

Independence Day (a.k.a. ID4) (1996)                                               2 

Jurassic Park (1993)                                                               2 

Pulp Fiction (1994)                                                                2 

Down Periscope (1996)                                                              2 
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Twelve Monkeys (a.k.a. 12 Monkeys) (1995)                                          2 

Mission: Impossible (1996)                                                         2 

Forrest Gump (1994)                                                                2 

Shawshank Redemption, The (1994)                                                   2 

Apollo 13 (1995)                                                                   2 

Prelude to a Kiss (1992)                                                           1 

Romeo and Juliet (1968)                                                            1 

Remains of the Day, The (1993)                                                     1 

Rain Man (1988)                                                                    1 

Saving Grace (2000)                                                                1 

Saving Private Ryan (1998)                                                         1 

dtype: int64 

 

 

This is a comparison of Euclidean distance and Manhattan distance without 

star wars : Episode IV – A New Hope (1997) 

Comparison of distance metric 

User ID Euclidean Distance Manhattan Distance 

User 1 & User 85 0 0 

User 1 & User 21 0 0 

User 85 & User 77 0 0 

User 11 & User 41 0 0 

User 1 & User 77 0.5 0.5 

User 1 & User 44 0 0 

User 1 & User 114 0.2857142857142857 0.3333333333333333 

 

In the above table we can see that in terms of accuracy the Manhattan 

distance performs significantly better and produce higher result even though some 

user similarity become 0 when Star Wars : Episode IV – A New Hope (1997) is 

removed and the ratings changed to other movies recorded in the dataframe. 

 


