
9

IMPLEMENTATION AND TESTING

5.1. Implementation

This chapter five describes implementation and testing where the implementation would

discover about the code and the explanation. The testing would discover about trial result of

algorithms and data structures

1 save_to = '/media/kevin/Kevin/Skripsi/haha/data'

2 target_size = (224,224)

3 batch_size = 32

4

5 train_datagen = ImageDataGenerator(

6 featurewise_center = True,

7 featurewise_std_normalization = True,

8 rotation_range = 20,

9 width_shift_range = 0.2,

10 height_shift_range = 0.2,
11 zca_whitening = True,
12 brightness_range = (0.4,0.99),
13 validation_split = 0.2,
14 rescale = 1./255,
15 shear_range = 0.2,
16 horizontal_flip = True)

As we saw in the list above, line 1 is the command to specify the storage location for the

results. Then lines 2 and 3 are commands to resize images. Lines 5 to 16 commands for changing

images such as flip, zoom, rotate, etc.

1 model = Sequential()
2 model.add(Conv2D(32,(3,3),activation='relu',input_shape=(150,150, 3)))
3 model.add(MaxPooling2D(pool_size=(2, 2)))
4 model.add(Dropout(0.25))
5 model.add(Conv2D(64, (3, 3), activation='relu'))
6 model.add(MaxPooling2D(pool_size=(2, 2)))
7 model.add(Dropout(0.25))
8 model.add(Flatten())
9 model.add(Dense(96, activation='relu'))
10 model.add(Dropout(0.5))
11 model.add(Dense(3, activation='softmax'))
12 model.compile(loss='categorical_crossentropy',optimizer='Adam',metric

s=['accuracy'])

10

As we saw in the list above, the first line means the sequential model applied to the

convolution process. In line 2 to line 12 is the process where cnn works, and there are several

layers consisting of several layers such as convolution layer, pooling layer, and solid layer.

1 epochs=100
2 batch_size=50
3
4 history = model.fit_generator(
5 train_generator,
6 epochs=epochs,
7 validation_data=validation_generator,
8 validation_steps=total_validate/batch_size,
9 steps_per_epoch=total_train/batch_size
10)

The first line specifies the number of times the dataset is trained. In line 2, it determines as

many as 32 data that are processed at one time. Lines 4 to 10 are commands to run the training

process

1 predict=model.predict_generator(test_generator,steps=np.ceil(total_tes
t/batch_size))

2 test_df['category'] = np.argmax(predict, axis=-1)

The code above used to predict the final result from images that want to predict

5.2. Testing

After conducting the analysis and implementation, the researcher did some testing using Relu

activation. Here are some of the accuracy obtained from several tests data training.

Epochs Training Data (%)

10 63.53 %

25 83.49 %

50 91.42 %

75 93.85 %

100 95.30%

TABLE 5.1 Training Data

11

From the results above, experiments were carried out with other activations with 100

epochs.

Epochs 100 Training Data (%)

Elu 92.78%

Tanh 37.13%

TABLE 5.2 Training Data Using 100 Epochs

After doing some data training, the highest percentage obtained was 95.42% at epochs 100.

Furthermore, the results of the process will be saved in a file called epochs100.hdf5. The next step

is to test the test image using the epochs100.hdf5 file. The images that will be tested are 50 images

consisting of halfmoon, plakat, and crowntail. Testing is also carried out using Elu and Tahn

activations. Here are the results of the test.

Activation Testing (%) Precision (%) Recall (%)

Relu 80 % 8,79 % 8,02 %

Elu 58 % 46,56 % 58,95 %

Tanh 52 % 47,54 % 65,81 %

TABLE 5.3 Precision Recall

From the results above, we can see that the highest testing results were obtained by Relu

activation. Therefore, of the three types of activation above, Relu activation is the most suitable

for classifying betta fish species.

12

FIGURE 5.1 Test Result

The following are the results of Relu activation testing :

TRUE POSITIVE CT : 15

TRUE POSITIVE PK : 12

TRUE NEGATIVE CT : 30 TRUE NEGATIVE PK : 29

FALSE POSITIVE CT : 1 FALSE POSITIVE PK : 5

FALSE NEGATIVE CT : 4 FALSE NEGATIVE PK : 4

TRUE POSITIVE HM : 13

TRUE NEGATIVE HM : 31

FALSE POSITIVE HM : 4

FALSE NEGATIVE HM : 2

13

CROWNTAIL

precission 0.9375

recall 0.7894736842105263

HALFMOON

precission 0.7647058823529411

recall 0.8666666666666667

PLAKAT

precission 0.7058823529411765

recall 0.75

AVERAGE

ACCURACY 0.8

PRECISSION 0.802696078431373

RECALL 0.8020467836257309

