DIVERSIFICATION OF BLUE TARO TUBER
(Xanthosoma sagittifolium L. Schott) PRODUCT THROUGH HEAT MOISTURE TREATMENT TO PRODUCE INSTANT PORRIDGE WITH CORN BROTH TASTE

BACHELOR THESIS

Submitted to the Faculty of Agricultural Technology in partial fulfillment of requirements for obtaining the bachelor degree

By:
YUNI RUSIANA
11.70.0055

DEPARTMENT OF FOOD TECHNOLOGY
FACULTY OF AGRICULTURAL TECHNOLOGY
SOEGIJAPRANATA CATHOLIC UNIVERSITY
SEMARANG

2015
STATEMENT OF THESIS AUTHENTICITY

The undersigned:

Name: Yuni Rusiana
Student number: 11.70.0055
Faculty: Agricultural Technology
Department: Food Technology

Declares that Thesis entitled “DIVERSIFICATION OF BLUE TARO TUBER (Xanthosoma sagittifolium L. Schott) PRODUCT THROUGH HEAT MOISTURE TREATMENT TO PRODUCE INSTANT PORRIDGE WITH CORN BROTH TASTE” is truly my original work to fulfill the requirement for obtaining the bachelor degree in Soegijapranata Catholic University, Semarang. As long as I know, there is none work or opinion that had been written or published by another people, except those mentioned in references. If someday part or whole of this Thesis is proved and found as plagiarism, then I deserve to be canceled with any risk of its punishment as the regulation that applicable in Soegijapranata Catholic University and/or the applicable of legislation.

Semarang, March, 2015

Yuni Rusiana
DIVERSIFICATION OF BLUE TARO TUBER
(*Xanthosoma sagittifolium* L. Schott) PRODUCT THROUGH HEAT MOISTURE TREATMENT TO PRODUCE INSTANT PORRIDGE WITH CORN BROTH TASTE

By:

YUNI RUSIANA
NIM: 11.70.0055

Department: Food Technology

This bachelor thesis has been approved and defended in front of examiners in March, 5th 2015

Semarang, March 2015

Agricultural Technology Faculty
Soegijapranata Catholic University

Supervisor,

Dr. Ir. Lindayani, MP.

Dean,

Dr. V. Kristina Ananingsih, ST. MSc.

Co-Supervisor,

Ir. Sumardi, MSc.
SUMMARY

In general, Indonesian people having habit consuming rice as a staple food. For reducing the number of rice consumption, tubers such as blue taro (*Xanthosoma sagittifolium* L. Schott) can be processed into an instant porridge to fulfill carbohydrate needs as a rice-replacement. Blue taro tuber has high nutrient and bioactive compounds, such as diosgenin and water soluble polysaccharides, but it is tasteless. Therefore, the instant porridge from blue taro tuber will be combined with corn broth powder to give specific aroma and taste in order to increase the consumer acceptance. The problem in processing blue taro instant porridge is the starch granule is difficult to rehydrate. Heat moisture technique could be used to modificate blue taro starch and increase the rehydration. The objectives of this study are to produce instant porridge from blue taro tuber with the addition of corn broth powder as a rice-replacement and to find out the effect of different heat moisture treatment on physical and chemical characteristics of blue taro instant porridge, especially in increasing the rehydration aspect. The research was conducted by giving heat moisture treatment to the blue taro flour at temperature 77°C and 110°C for 3 hours, 6 hours and 9 hours. The physical characteristics consisted of rehydration, solubility, water absorption index, dispersibility, color, bulk density, and swelling power were analyzed. The blue taro flour which had the best physical characteristics (77°C in 3 hours and 110°C in 6 hours) and control flour were continued to the chemical analysis consists of carbohydrate, protein, fat, crude fiber, moisture and ash content. The blue taro flour was used to make instant porridge with the addition of corn broth powder for sensory analysis by 30 untrained panelists with parameters, i.e. taste, aroma, colour, texture, and overall. The best heat moisture treatment to produce blue taro instant porridge was found at 77°C (3 hours). The physical analysis, included solubility (8.40±0.68), water absorption index (321.26±5.57), rehydration (2.02±0.06), dispersibility (41.60±0.26), swelling power (4.34±0.46) and bulk density (1.50±0.02). The chemical analysis consisted of moisture content (6.80±0.28), ash content (3.39±0.09), fat (0.90±0.10), protein (1.66±0.20), crude fiber (9.13±0.45), and carbohydrate (78.12±0.68) whereas in sensory analysis, it had the highest preferences in color (1.50±0.51), taste (1.37±0.49), aroma (1.43±0.50), and overall (1.33±0.48).
RINGKASAN

Pada umumnya, masyarakat Indonesia masih mengkonsumsi beras sebagai makanan pokok. Untuk mengurangi tingginya angka konsumsi beras, umbi-umbian seperti kimpul (Xanthosoma sagittifolium L. Schott) dapat diproses menjadi produk bubur instan sehingga dapat memenuhi kebutuhan karbohidrat sebagai pengganti beras. Umbi kimpul cenderung memiliki rasa yang tawar walaupun memiliki senyawa bioaktif seperti diosgenin dan polisakarida larut air dan kandungan nutrisi yang tinggi. Oleh sebab itu, bubur instan yang diproduksi menggunakan umbi kimpul akan dikombinasikan dengan bubuk kaldu jagung untuk memberikan citarasa dan aroma yang khas serta meningkatkan penerimaan konsumen. Namun, umbi kimpul memiliki granula pati yang sulit untuk mengalami rehidrasi. Teknik heat moisture dapat digunakan untuk memodifikasi pati umbi kimpul dan meningkatkan rehidrasi nya. Tujuan dilakukannya penelitian ini adalah untuk menghasilkan bubur instan dengan penambahan bubuk kaldu jagung sebagai alternatif makanan pengganti beras, dan untuk mengetahui pengaruh perlakuan heat moisture yang berbeda terhadap karakteristik fisik dan kimia bubur instan dari umbi kimpul, terutama untuk meningkatkan daya rehidrasisinya. Penelitian dilakukan dengan memberikan perlakuan hidrotermal pada suhu 77°C dan 110°C selama 3 jam, 6 jam, dan 9 jam. Kemudian, dilakukan analisa fisik yang meliputi rehidrasi, kelarutan, indeks penyerapan air, daya dispersi, warna, densitas kamb dan daya pengembangan. Tepung kimpul hasil perlakuan heat moisture yang memiliki karakteristik fisik terbaik (77°C selama 3 jam dan 110°C selama 6 jam) dan tepung kontrol dianalisa kandungan kimianya, meliputi karbohidrat, protein, lemak, serat katar, kadar air dan abu. Kemudian, tepung kimpul tersebut digunakan sebagai bahan pembuatan bubur instan dengan penambahan bubuk kaldu jagung untuk analisa sensori yang diselenggarakan dengan 30 panelis tidak terlatih. Parameter yang digunakan dalam uji sensori adalah rasa, aroma, tekstur, warna, dan keseluruhan. Perlakuan heat moisture terbaik untuk menghasilkan bubur instan kaldu jagung adalah pada 77°C (3 jam) dengan hasil analisa fisik meliputi kelarutan (8,40±0,68), indeks penyerapan air (321,26±5,57), rehidrasi (2,02±0,06), daya dispersi (41,60±0,26), daya pengembangan (4,34±0,46), dan densitas kamba (1,50±0,02). Selain itu, kandungan kimianya meliputi kadar air (6,80±0,28), kadar abu (3,39±0,09), lemak (0,90±0,10), protein (1,66±0,20), serat kasar (9,13±0,45), dan karbohidrat (78,12±0,68) sedangkan pada analisa sensori, tepung ini memiliki tingkat kesukaan tertinggi pada warna (1,50±0,51), rasa (1,37±0,49), aroma (1,43±0,50), dan keseluruhan (1,33±0,48).
ACKNOWLEDGEMENT

Praise in the name of God because of His guidance, the author has finished the bachelor thesis entitled “Diversification of Blue Taro Tuber (*Xanthosoma sagittifolium* L. Schott) Product Through Heat Moisture Treatment to Produce Instant Porridge With Corn Broth Taste.” There are so many new experiences, knowledges and motivation during author’s study and finishing this thesis at Soegijapranata Catholic University. Hopefully, all of these experiences and knowledges will be useful for author and all parties.

This thesis completed by assistance from some great people around the author as a guider and supporter. Therefore, the writer would like to express the sincerest gratitude to everyone who has helped in finishing this thesis:

1. Dr. V. Kristina Ananingsih, ST. MSc. as the dean of Faculty of Agricultural Technology, Department of Food Technology Soegijapranata Catholic University.
2. Dr. Ir. Lindayani, MP. as supervisor who has generously spared her time to support and supervise during finishing this thesis. The author really appreciates the guidance and patience given to complete this thesis. Thank you for giving the great inspiration.
3. Ir. Sumardi, MSc. as co-supervisor who has guided the author from the very beginning of author’s study until finishing this thesis. Thank you for the time, patience, motivation and advices. Thank you for the great mentoring.
4. Author’s parents and families who always give the great support for the author, especially author’s sisters Yani and Lyanti. Thank you for the love and encouragement.
5. Jonathan Alvin, Amanda Patricia and Nies Mayangsari as the author’s beloved friends who always help and support during author’s study and research. Thank you for the great moment.
6. Shannon, Tabita, Amelia, Etha, Yosie, Aletheia, Dea, Hendra, George, Anggoro, as the author’s laboratory partner who always help during the experiment. You are the best guys.

7. For all the lectures at Food Technology Department who have guided and given knowledge to the author.

8. Mas Soleh, Mas Pri, Mbak Endah, and Mas Lylyx as the laboratory assistant who always help and give advice to the author during the experiment in the laboratory.

9. Thank you for all administration staff for always giving support and help the author in completing the administration archives, and also all employees for providing endless help for the author.

10. All related parties who helped the author finishing this thesis, which cannot be possibly mentioned one by one.

Semarang, March, 2015

The Author,

Yuni Rusiana
CONTENTS

SUMMARY... iv
RINGKASAN.. v
ACKNOWLEDGEMENT... vi
LIST OF CONTENTS... viii
LIST OF TABLES.. x
LIST OF FIGURES... xi
LIST OF APPENDICES.. xiii

I. INTRODUCTION ... 1
 1.1. Background ... 1
 1.2. Literature Review ... 2
 1.2.1. Blue Taro Tuber (*Xanthosoma sagittifolium* L. Schott) 2
 1.2.2. Corn (*Zea mays* L.) ... 4
 1.2.3. Instant Porridge .. 5
 1.2.4. Heat Moisture Treatment .. 6
 1.3. Objectives ... 8

2. MATERIALS AND METHODS ... 9
 2.1. Place and Time .. 9
 2.2. Materials ... 9
 2.2.1. Equipments ... 9
 2.2.2. Materials .. 9
 2.3. Methods .. 10
 2.3.1. Preliminary Study ... 10
 2.3.1.1. Flouring Process of Blue Taro Tubers .. 10
 2.3.2. Main Study .. 12
 2.3.2.1. Heat Moisture Treatment .. 12
 2.3.2.2. Corn Broth Powder .. 13
 2.3.2.3. Instant Porridge ... 14
 2.3.3. Chemical Analysis of Blue Taro Tuber Flour .. 15
 2.3.3.1. Moisture Content ... 15
 2.3.3.2. Ash Content .. 16
 2.3.3.3. Protein .. 16
 2.3.3.4. Fat .. 17
 2.3.3.5. Fiber Analysis .. 17
 2.3.3.6. Carbohydrate Analysis ... 18
 2.3.4. Physical Analysis of Heat Moisture Blue Taro Tuber Flour 18
 2.3.4.1. Dispersibility .. 18
 2.3.4.2. Color Measurement ... 18
 2.3.4.3. Swelling Power Index Analysis ... 19
 2.3.4.4. Solubility Analysis ... 19
 2.3.4.5. Water Absorption Index Analysis .. 19
 2.3.4.6. Bulk Density ... 20
 2.3.4.7. Rehydration Index .. 20
LIST OF TABLES

Table 1. Nutrient Content in 100 g of Blue Taro Tuber ... 3
Table 2. Nutrient Content of 100 g of Sweet Corn... 5
Table 3. Physical Analysis Results of Blue Taro Tuber Flours With Heat moisture Treatment at 77°C ... 22
Table 4. Physical Analysis Results of Blue Taro Tuber Flours With Heat moisture Treatment at 110°C ... 23
Table 5. Color Intensity of Blue Taro Tuber Flour With Heat moisture Treatment at 77°C ... 24
Table 6. Chemical Analysis of Blue Taro Flour ... 26
Table 7. Sensory Analysis Results of Blue Taro Instant Porridge with Corn Broth Powder .. 27
LIST OF FIGURES

Figure 1. Blue taro tuber (Personal Documentation) 3
Figure 2. Diagram of blue taro tuber flour processing 11
Figure 3. Diagram of heat moisture treatment 13
Figure 4. Diagram of corn broth powder processing 14
Figure 5. Diagram of instant porridge processing 15
Figure 6. The appearance of blue taro flour with different heat moisture treatment, (a) Blue taro flour without heat moisture treatment, (b) Heat moisture blue taro flour at 77°C (3 hours), (c) Heat moisture blue taro flour at 77°C (6 hours), (d) Heat moisture blue taro flour at 77°C (9 hours), (e) Heat moisture blue taro flour at 110°C (3 hours), (f) Heat moisture blue taro flour at 110°C (6 hours), (g) Heat moisture blue taro flour at 110°C (9 hours). .. 25
Figure 7. Panelist preferences about blue taro instant porridge combined with corn broth powder .. 27
Figure 8. Blue taro instant porridge (1) Control, (2) Instant porridge under heat moisture treatment at 77°C (3 hours) (3) Instant porridge under heat moisture treatment at 110°C (6 hours) 28
Figure 9. Process of making blue taro flour (a) Fresh blue taro tubers, (b) Blanching, (c) Slicing of blue taro tubers, (d) Soaking in water, (e) Soaking in sodium metabisulfit, (f) Drying in dehumidifier, (g) Crushing dry blue taro tubers using blender, (h) Sieving blue taro flour, (i) Blue taro flour ... 51
Figure 10. Process of making heat moisture blue taro flour (a) Water adding to the blue taro flour (b), (c) Putting blue taro flour in trays and cover with plastic wrap, (d) Putting blue taro flour in refrigerator, (e) Covering the tray with aluminium foil, (f) Drying in oven, (f) Heat moisture blue taro flour ... 52
Figure 11. Process of making instant corn broth (a) Fresh corn, (b) Cooking for one hour, (c) Filtering, (d) Corn broth, (e) Drying in oven, (f) Dry corn broth, (g) Crushing with blender, (h) Instant corn broth .. 53
Figure 12. Process of making blue taro instant porridge with addition of corn broth (a) Adding hot water to the combination of blue taro flour and corn broth (b), (c) Blue taro instant porridge with corn taste 54
Figure 13. The Color intensity of blue taro flours with varying heat moisture treatment (a) Blue taro flour without heat moisture treatment, (b) Heat moisture blue taro flour at 77°C (3 hours), (c) Heat moisture blue taro flour at 77°C (6 hours), (d) Heat moisture blue taro flour at 77°C (9 hours), (e) Heat moisture blue taro flour at 110°C (3 hours), (f) Heat moisture blue taro flour at 110°C (6 hours), (g) Heat moisture blue taro flour at 110°C (9 hours). ... 55
LIST OF APPENDICES

Appendix 1. Process of Making Blue Taro Flour .. 51
Appendix 2. Process of Making Heat Moisture Blue Taro Flour 52
Appendix 3. Process of Making Corn Broth Powder .. 53
Appendix 4. Process of Making Blue Taro Instant Porridge With Addition of Corn Broth ... 54
Appendix 5. The Color Intensity of Blue Taro Flour with Different Heat Moisture Treatment .. 55
Appendix 6. Worksheet of Sensory Analysis ... 56
Appendix 7. Scoresheet of Sensory Analysis .. 57
Appendix 8. Physical Statistic Analysis Using SPSS .. 60
Appendix 9. Chemical Statistic Analysis Using SPSS ... 65
Appendix 10. Sensory Statistic Analysis Using SPSS ... 67