
CHAPTER 5 

IMPLEMENTATION AND TESTING

5.1 Implementation

5.1.1 Term Frequency and Document Frequency 

This project uses Python language and in this section explains how the

program works. This project also describes the implementation of the program to

be able to analyze, the data needed is training data and testing data. Both of these

data must have been pre-processed and have TF-IDF values.

To  calculate  the  TF-IDF  value,  it  is  necessary  to  calculate  the  term

frequency value, then calculate the number of document frequencies, calculate the

IDF value, and finally calculate the TF-IDF value.

The following program code calculates the Term Frequency and Document

Frequency values in the title section.

1. def term_frekuensi_title(all_tot_title,data_all_prepos):
2.     term_info_frek =[]
3.     info = []
4.
5.     for term in all_tot_title:
6.         i = 0;
7.         jumlah = 0
8.         for lists in data_all_prepos['title']:
9.             count = lists.count(term)
10.           jumlah += count
11.           info1 = {"doc": i, "count" : count, "term":term}
12.           info.append(info1)
13.           i +=1
14.       term_info = {"term": term, "info":info, "df" : jumlah}
15.       term_info_frek.append(term_info)  
16.         
17. df_term_info_title = pd.DataFrame(term_info_frek)
18. # df_term_info['info']
19.
20. df_count_doc_term_title = pd.DataFrame(info)
21. # df_count_doc_term
22.
23. group_term_count_title=

df_count_doc_term_title.groupby(['term','doc'])
24. # group_term_count.first()
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25.
26. return

df_term_info_title,df_count_doc_term_title,group_term_count_tit
le

Line 5 explains the looping of all_tot_title. all_tot_title is a variable that

contains the results of the title data that has been split down into words, while the

term functions to contain the contents of the all_tot_title list.

Then  in  the  line  8  to  output  data  is  only  the  title  column,  then  it  is

accommodated to the lists variable. Lines 9 to 13 describe the process of adding

the number of doc, count, or term. In line 9, the sum of each document is based on

terms, in line 11 describes the contents of the document, the count is based on the

terms. If you experience looping, the contents in info1 will increase. Then fill in

the doc, count, and terms contained in a list called info.

Whereas the term_info in line 14 is the result of each term having info and

df values. Info variable is the result that is accommodated from list info1, then df

is the number of frequencies for each document based on term. Next in line 15,

the results of term_info will be put into a list called term_info_frek.

Line 23 is the program code that contains term and doc groupings. Lines

17-23  about  forming  data  contents  starting  with  a  list  are  changed  to  form

dataframes. Next line 24, the return function returns results in lines 17, 20 and 23.

If you want to find the term frequency and document frequency results for

the content section, simply change the data in line 8 to be converted to lists in

data_all_prepos ['content']. The rest is the same process, but the results issued are

different. Each of the results returned in line 26 is useful for calculating IDF, and

calculating TF-IDF.

5.1.2 Inverse Document Frequency

The following program code calculates Inverse Document Frequency.

27. def idf_title(df_term_info_title,data_all_prepos):
28.     
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29.    #Document Frekuensi 
30.
31.    import math
32.    idf = []
33.
34.    for tf in df_term_info_title['df']:
35.         a= math.log1p(len(data_all_prepos['title'])/tf)
36.         idf.append(a)
37.
38.    # pd.DataFrame([df_term['term']],columns=['idf'])
39.    df_term = pd.DataFrame(df_term_info_title['term'])
40.    df_idf = pd.DataFrame(idf, columns=['idf'])
41.
42. df_term_idf=pd.DataFrame({'term':df_term['term'],'idf':df_

idf['idf']})
43.    group_idf_title =  df_term_idf.groupby(['term'])
44.     
45.     
46.     return group_idf_title

In  the  above  program code  starting  from line  27-46  is  the  IDF value

calculation code. Line 34 is the repetition done by df_term_info_title [‘df’] then it

is stored in the tf variable. The contents of df_term_info_title [‘df’] are the result

of term_info_frek, which was previously calculated with term frequency. Next in

line 35 is the calculation of the IDF formula, the length of the data results of the

title section divided by tf. After getting the value of the division is then performed

log operations. Line 36 functions to add a list to the variable a. Lines 38 through

42 change to the form of dataframes, then lines 46 function to return the results to

row  43.  This  function  also  functions  in  calculating  the  Inverse  Document

Frequency content section.

5.1.3 Term Frequency - Inverse Document Frequency

The  following  program  code  calculates  Term  Frequency  -  Inverse

Document Frequency.

47. def
tf_idf_title(group_idf_title,group_term_count_title,data_all_pr
epos):

48.
49. tf_idf=group_idf_title['idf'].first()*group_term_count_ti

tle.first()['count']
50.     tf_idf_frame = pd.DataFrame(tf_idf,columns=['tf_idf'])
51.
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52.     #SUM each DOC
53.     tf_idf_doc  =  tf_idf_frame.groupby(['doc'])

['tf_idf'].sum()
54.     df_tf_idf_doc = pd.DataFrame(tf_idf_doc)
55. df_tf_idf_doc=df_tf_idf_doc.reset_index().drop(columns=['

doc'])
56.     
57.     
58.     hasil_tfidf_title = data_all_prepos.join(df_tf_idf_doc)
59.     
60.     return hasil_tfidf_title

The above program code is the code to calculate the TF-IDF value for each

document. Line 49 contains the calculation results of IDF multiplied by the term

frequency calculation  results.  The idf  calculation result  is  obtained at  line  43,

while group_term_count_title is the calculation result from line 23.

Furthermore, line 53 functions to classify the results of tf_idf based on doc

(document), then each doc has a term and the value of tf-idf - each is given a

sum() function to get the total of the tf-idf value of all terms in each doc. Lines 54

-58 change the form to dataframe, reset_index() aims to reset the index. While the

drop function on line 55 is to delete the doc column in the dataframe.

Then the join function on line 58 functions to combine the results of the

df_idf_doc data with the data results from data_all_prepros. Last line 60 the return

function is returning the value of the result_tfidf_title.

5.1.4 Category Term Frequency - Inverse Document Frequency

The following program code for calculating categories based on TF-IDF

values.

61. def category_tfidf_title(hasil_tfidf_title):
62.    
63.    result_category = []
64.    for x in hasil_tfidf_title['tf_idf']:
65.         if x <= 0 : 
66.             result_category.append(5)
67.         elif 0 < x <= 50 : 
68.             result_category.append(10)
69.         elif 50 < x <= 100 :
70.             result_category.append(15)
71.         elif 100 < x <= 150 :
72.             result_category.append(20)
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73.         elif 150 < x <= 200 :
74.             result_category.append(25)
75.         elif 200 < x <= 250 :
76.             result_category.append(30)
77.         elif 250 < x <= 300 :
78.             result_category.append(35)
79.         elif 300 < x <= 350 :
80.             result_category.append(40)
81.         elif 350 < x <= 400 :
82.             result_category.append(45)
83.         elif 400 < x <= 450 :
84.             result_category.append(50)
85.         elif 450 < x <= 500 :
86.             result_category.append(55)
87.         elif 500 < x <= 550 :
88.             result_category.append(60)
89.         else:
90.             result_category.append(65)
91.
92.    category=pd.DataFrame(result_category,columns=['kategori_tf

idf_title'])
93.    hasil_tfidf_title= hasil_tfidf_title.join(category)
94.
95.    return hasil_tfidf_title

Giving a category to each document for adding data in the analysis also

uses  the  Support  Vector  Machine algorithm. Because  the  algorithm requires  2

sample data as x for the first data horizontal section and y for the second data

vertical section. Above is the program code for calculating categories based on

TF-IDF values.

Row 64 has a function for repeating the results  of the result_tfidf_title

based on the column tf_idf, the result of the result_tfidf_title is the result of row

48.  The  TF-IDF  results  have  been  calculated  TF-IDF  in  section  5.1.3.  In

categorizing  or  grouping  something  needs  to  require  rules  so  that  the  results

issued  in  accordance  with  the  rules  made.  As  lines  65-90  are  conditions  or

requirements in order to produce output in accordance with these conditions.

Following are the rules in classifying each TF-IDF value.

1. Line 65 - 66 is the value of tf-idf less than or equal to 0 give value 5.

2. Lines 67 - 68 are tf-idf values more than 0 and less or equal to 50, give values

10.
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3. Lines 69 - 70 are tf-idf values greater than 50 and less than or equal to 100 give

a value of 15.

4. Line 71 - 72 is the value of tf-idf more than 100 and less or equal to 150, give a

value of 20.

5. Line 73 - 74 is the value of tf-idf more than 150 and less or equal to 200, give

the value 25.

6. Line 75 - 76 is the value of tf-idf more than 200 and less than or equal to 250,

give value 30.

7. Line 77 - 78 is the value of tf-idf more than 250 and is less than or equal to 300,

give a value of 35.

8. Lines 79 - 80 are tf-idf values greater than 300 and less or equal to 350 and give

values 40.

9. Lines 81 - 82 are tf-idf values greater than 350 and less than or equal to 400

give values 45.

10. Lines 83 - 84 are tf-idf values more than 400 and less or equal to 450 give

values 50.

11. Lines 85-86 are tf-idf values of more than 450 and are less than or equal to

500 and give values 55.

12. Lines 87 - 88 are tf-idf values of more than 500 and less or equal to 550 give a

value of 60.

13. Lines 89 - 90 are tf-idf values of more than 550 and give values 60.

Line 92 changes the form of a list to a dataframe based on the results made

at lines 65-90. Next, line 93 combines the results of the results_tfidf_title with the

results of the category. Row 95 to return the value from row 93.



74

5.1.5 Implementation using the Random Forest algorithm

5.1.5.1 Code Helper

Before entering the calculation stage of the Random Forest algorithm, a

calculation is required for the decision tree algorithm. Because the Random Forest

algorithm is an application of the decision tree algorithm. Code helper is the code

that will be used in the decision tree method.

Here is the code to check whether the data is pure, there are 1 labels or 2

labels.

96. #Check Data Pure
97. def check_data_pure(data):
98.     label = data[:,0]
99.
100. unique_label = np.unique(label)
101.     
102. if len(unique_label) == 1:
103.    return True
104. else:
105.    return False

The code above is  a  data checking function.  Row 98 displays all  rows

based on column 0, column 0 contains labels. Next 100 lines to display unique

words, so the output has different values.

Then lines 102 - 105 describe the condition where the length of the results

from line 100 is 1, then returns the value True and if false, returns the False value.

Furthermore,  the following program code functions  to classify Hoax or

Real.

106. def klasifikasi(data):
107.   label = data[:,0]
108.     
109. unique_label,jml_label=np.unique(label,return_counts=True)
110.     
111. index = np.argmax(jml_label)
112.     
113. klasifikasi_label = unique_label[index]
114.     
115. return klasifikasi_label
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At line 107 the same as row 98 is showing all rows based on column 0,

column  0  contains  labels.  Column  109  uses  unique  from  numpy  to  display

different values. While return_counts is used to calculate the total array of data,

then the two results are contained in the unique_label and jml_label variables.

Furthermore,  row  111  looks  for  the  largest  integer  value  from the  results  of

jml_label obtained from row 109. Row 113 is a way to convert the index value

obtained from row 111 into the unique_label variable. Then line 115 is the return

value from the results of classification_label obtained in line 113.

The following program code has a potential split function.

116. def get_potensial_split(data):
117.   potential_splits = {}
118. x, n_columns = data.shape
119. for column_index in range(1,n_columns):   
120.     potential_splits[column_index] = []
121.     values = data[:, column_index]
122.     unique_values = np.unique(values)
123.
124.     for index in range(len(unique_values)):
125.         if index != 0:
126.            current_value = unique_values[index]
127.            previous_value = unique_values[index - 1]
128. potential_split  =  (current_value  +

previous_value) / 2
129.                     
130.            potential_splits[column_index].append(potential_s

plit)
131. return potential_splits

Split potential function is a function to separate between the first value and

the value afterwards. Row 118 contains data.shape, meaning it provides the total

value of rows and columns. So that the total row will go into the x variable while

the total column will go to the n_columns variable.

Line 119 is a loop with the n_columns limit of 3, so it prints index column

1 and 2. Index column 0 does not print because 1, n_columns means to pass the

initial index in that range. After that, line 124 is a loop with a length limit of

unique_values, which is obtained from row 122 containing unique data from all

rows in the column named column_index. In that for there is an if statement at
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line 125 where the index cannot or is equal to 0. If True then enter line 126-130.

Line 126 initializes the value in each index, and line 127 initializes the value in

the previous index. To find the potential split value by adding up the value in the

index and the values in the previous index, then the results are divided in two.

After getting the results it is then placed in the dictionary with the potential_splits

variable  at  line 129.  On line 131 is  returning the value of  the potential_splits

result, the contents of which are obtained from line 130.

The following code split program data.

132. def split_data(data,split_column,split_value):
133.  split_data = data[:,split_column]
134.     
135.  data_min =  data[split_data<=split_value]
136.  data_max =  data[split_data>split_value]
137.     
138.  return data_min,data_max

In the program code above to find the minimum data and maximum data

based on split value. Like line 135 to find the minimum data, the split data must

be less than the split value. The results of the split data obtained from line 133, the

line prints all the rows in the column named split_column. Meanwhile, to find the

maximum  data  in  row  136  the  data  must  be  greater  than  the  split  value.

split_column and split_value are obtained when running the best split function

first. Then in line 138 returns the minimum data value and maximum data.

The following program code function hitung_entropy to calculate entropy.

139. def hitung_entropy(data):
140.  label = data[:,0]
141. unique_label,count_label=np.unique(label,return_counts=Tr

ue)
142.
143.  probabilitas =  count_label / float(sum(count_label))
144.     
145.
146.  entropy = sum(probabilitas * -np.log2(probabilitas))
147.     
148.  return entropy

Furthermore, the entropy calculation function, this function is to find the

value of information that states the value of uncertainty. With the formula lined up

139, before that calculate the probability first on line 143. Line 143 total Hoax and
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Real labels in the form of an array divided by the total addition of the total Hoax

labels and the total Real labels. Then the probability result is used as an entropy

calculation in line 146. To calculate the entropy the sum of probabilities times the

results of the probability log.

The following program code function hitung_overall_entropy to calculate

overall entropy.

149. # Overall Entropy
150.
151. def hitung_overall_entropy(data_min,data_max):
152.     jml_data = len(data_min)+len(data_max)
153.
154.    jml_data_min = len(data_min)/float(jml_data)
155.    jml_data_max = len(data_max)/float(jml_data)
156.     
157. overall_entropy=jml_data_min*  hitung_entropy(data_min)

+ jml_data_max * hitung_entropy(data_max) 
158.     
159.     
160.    return overall_entropy

The  overall  entropy  program code  function,  overall  entropy,  calculates

entropy by using minimal data multiplied by the minimum amount of data. After

getting the results, the results are summed by the product of the maximum amount

of data and entropy results using the maximum data as in line 157. jml_data_min

is obtained from the length of the minimum data divided by the total minimum

and maximum data length. While the maximum number of data_ml is obtained

from the maximum data length divided by the minimum and maximum total data

length. Then end the return line 160 to return the value of overall_entropy.

The following program code function best_split.

161. # BEST SPLIT
162. def best_split(data, potential_splits):
163. high_entropy = 999 # High Entropy
164. for col_index in potential_splits:
165.       for value in potential_splits[col_index]:
166. data_min,data_max=split_data(data,split_column=co

l_index, split_value=value)
167. overall_entropy=hitung_overall_entropy(data_min,

data_max)
168. if overall_entropy < high_entropy :
169.              overall_entropy = overall_entropy
170.              split_column = col_index
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171.              split_value = value
172.
173.                 
174. return split_column, split_value

The function above is to find the cut of the clearest line between minimal

and maximum data.  The first  in  lines  164-171 is  a statement  for repetition of

potential_splits () data that has been obtained previously in the get_potential_split

function. Each potential data is entered into the statement for return in line 165 to

display the value in each index. Then in line 166 look for min data and max data

using the split data function where the function requires data, col_index and value.

Next on line 167 call the function to get the overall entropy results from

minimal data and maximum data. Line 168 is checked if the overall entropy yield

is less than high_entropy which is 999, so it will run lines 169-171. Then line 174

to return the results of split_column and split_value.

5.1.5.2 Implement the Decision Tree method

The following is the Decision Tree Program code.

175. def decisionTree_fit(df, i=0, min_samples=2, max_depth=2):
176.     
177.  # prepare data
178. if i == 0:
179.         global column_headers
180.         column_headers = df.columns
181.         data = df.values
182.         
183. else:
184.         data = df           
185.     
186.     # check data pure, or panjang data less then sample or i

same max_depth
187. if (check_data_pure(data) or len(data)<min_samples) or (i ==

max_depth):
188.         classification = klasifikasi(data)
189.         return classification
190.
191.     
192. # i is not 1
193. else:
194.         
195.         i += 1
196.         # function before algorithm (helper)
197.         potential_splits = get_potensial_split(data)
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198. split_column,  split_value  =  best_split(data,
potential_splits)

199. data_min,  data_max  =  split_data(data,
split_column, split_value)

200.         
201.         
202.         # inisiasi sub-tree
203.         feature_name = column_headers[split_column]
204. question  =  "{}  <=  {}".format(feature_name,

split_value)
205. #         print(question)
206.
207.         sub_tree = {question: []}
208. #         print(sub_tree)
209.         
210.         # recursif to find question
211.         small = decisionTree_fit(data_min, i, min_samples,

max_depth)
212.       big = decisionTree_fit(data_max, i, min_samples,

max_depth)
213.         
214.         if small == big:
215.             sub_tree = small
216.         else:    
217.             sub_tree[question].append(small)
218.             sub_tree[question].append(big)
219.         
220.         return sub_tree
221.     
222. def predict_X(X, tree):
223.     question = tree.keys()[0].encode('utf-8')
224. #     print(question)
225.     feature_name, operator, value = question.split(" ")
226.
227.
228.     # ask question
229.     if operator == "<=":
230.         if X[feature_name] <= float(value):
231.             answer = tree[question][0] #answer
232.         else:
233.             answer = tree[question][1]
234.   
235.     # recursive 
236.     if isinstance(answer, dict):
237.         sisa_tree = answer
238.         return predict_X(X, sisa_tree)
239.     
240.     else:
241.         return answer
242.     
243.
244. def decisionTree_predict(X_test, tree):
245. DT_prediksi  =  X_test.apply(predict_X,  args=(tree,),

axis=1)
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246.     
247.     return DT_prediksi

Above is the Decision Tree program code starting from line 175 to 248.

First on lines 178 - 184 is the beginning of incoming data and will be checked if

the data has not undergone a decsion tree process then it will run lines 179-181.

Meanwhile, if you have experienced the decision tree process, the data has an i

value of more than 0, then run row 184.

Then line 187 checks whether the data is pure or not. If true then it will run

lines 188-189 which calls the classification function as classifying data. If the data

is  not  pure,  enter  row 194-199.  Where  the  line  calls  the  helper  code  such as

function get_potential_split (), best_split (), and split_data (). Also gives the value

i increased by value 1.

Furthermore, before creating a sub tree, initiation of a sub tree is like row

203-204. At line 203 there is a feature name that contains columns of data, namely

tf_idf and category_tfidf. Line 204 will be filled with questions with the operator

"<=" with the format of the column name and split value that has been calculated

in the split data function. After getting the question results, the results are entered

into a dictionary called sub_tree.

To  find  the  appropriate  question,  the  if  statement  on  lines  214-220  is

needed, because the operator is less than then to find the question, it needs to be

recursive to the decisionTree_fit function. If the result of small value is equal to

big, it will display small result. Small and big on lines 211 and 212 are different.

If small uses minimal data, while big uses maximum data. Next, row 217 - 218, if

the small and big results are different, then it will run lines 217 - 218. Line 220

returns the sub_tree result value.

After  getting  the  results  of  the  sub  tree,  the  sub  tree  can  be  used  for

prediction using the decision tree method at  lines  245 -  246.  At line 246,  the

function is  to pass the X_test  data to the predict_X function with the position
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argument, namely tree. The test data will enter the predict_X function with X, the

test data and the tree using the results of the sub tree that has been obtained. At

line 223 is the initialization of the tree in the keys in list to 0. Then it is divided

into 3 parts, namely feature_name, operator, value. After it is broken into 3 parts,

then it will be checked with an if statement. If the operator is equal to "<=" then it

will  run lines  230 -  233. In line 230 there is  a re-check of the test  data  with

feature_name less than the value, then enter row 231 and produce a branch value

in list 0, if wrong will enter line 233 and produces the second branch value in list

1.

Next, line 236 - 241 checks whether this answer is a dictionary type or not.

If true, then it will run lines 237 - 239 containing the answer, the line will be

forwarded to the predict_X function with test and answer data. If it is incorrect

then  it  will  run line  241 which  is  the  return  value  from the  answer  that  was

previously checked in line 230.

5.1.5.3 Implementation of the Random Forest algorithm

Following is the implementation of the Random Forest algorithm.

248. #Predict RANDOM FOREST
249.
250. # random data
251. def split_random_data(X, n_data):
252.   index_data  =  np.random.randint(low=0,  high=len(X)-1,

size=n_data)
253.     split_random_df = X.iloc[index_data]
254.     return split_random_df
255.
256. def randomforest_fit(X, n_trees, n_data, max_depth):
257.     rf = []
258.     for i in range(n_trees):
259.         split_random_df = split_random_data(X, n_data)
260. tree  =  decisionTree_fit(split_random_df,

max_depth=max_depth)
261.         rf.append(tree)
262.     
263.     return rf
264.
265. def randomforest_predict(X_test, rf):
266.     data_predict = {}
267.
268.     
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269.     for i in range(len(rf)):
270.         column_name = "{}".format(i)
271.         
272.         if isinstance(rf[i], dict):
273.             print(rf[i])
274.             column_name = "i{}".format(i)
275. predict  =  decisionTree_predict(X_test,

tree=rf[i])
276.             data_predict[column_name] = predict
277.             data_prediksi = pd.DataFrame(data_predict)
278.         else:
279.             continue
280.             
281.     random_forest_predictions = data_prediksi.mode(axis=1)

[0]    
282.     return random_forest_predictions

After getting the tree results from the decision tree calculation, enter the

Random  Forest  algorithm stage.  Where  this  stage  starts  from breaking  down

branches based on the number of n_trees and dividing the data in each branch by

n_data.

The next step is to enter the decision tree using random data. So get a tree

from Random Forest. After getting the results of the Random Forest tree, the next

step is  to implement  using testing data  based on the tree that  is  trained using

training data.

In  lines  252  -  254  is  the  first  stage  function  which  is  to  choose  data

randomly which will be placed in the tree branch in a row of 256. Then enter the

second stage which is to place several branches of the tree and implement using

the decision tree method. Line 258 is a repetition of each number of n_trees, and

entering line 258-263 there are random data from data X as many as n_data. Then

each branch enters a decision tree function with a number of max_depth.  The

result of the decision tree function is a tree, the results will be placed in a list

called rf and returned in the rf value 263.

Line 265 is the Random Forest prediction function that requires test data,

and the calculated rf results. In line 269, the number of rf lengths is repeated.

Next, each value is checked and passed to the decision tree function shown in line

275, using test data and the tree uses the results of rf every i. Then the prediction
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results are added to the dictionary named data_predict. Meanwhile, if the answer

is not dictionary, it will be skipped, because it cannot enter the prediction function

using the decision tree. After getting each predictive data, the next step in line 281

is to determine the most repeatable data frame value. The results from row 281

will be returned in row 282.

5.1.6 Implementation uses the Support Vector Machine algorithm

The following is the Vector Machine Support program code.

283. import numpy as np
284.
285. class SVM :
286. def__init__(self,learning_rate=0.0001,lambda_parameter=0.01,

n_iter=100):
287.         #constructors
288.         self.learning_rate=learning_rate
289.         self.lambda_parameter = lambda_parameter
290.         self.n_iter=n_iter
291.         self.w = None 
292.         self.b = None
293.     
294. def fit(self,X,y):
295.         n_sample=len(X)
296.         n_feature=2
297.         y = np.where(y<=0,-1,1)
298.         self.w = np.zeros(n_feature)
299.         self.b = 0
300.      
301.         for x in range(self.n_iter):
302.             for i,xi in enumerate(X):
303. kondisi=  y[i]  *  (np.dot(self.w,xi)-

self.b)>=1 

304.                if kondisi:
305.                    self.w = self.w - self.learning_rate * (2

* self.lambda_parameter * self.w)
306.                else:
307.                    self.w = self.w - self.learning_rate * (2

* self.lambda_parameter * self.w - np.dot(y[i],xi))
308.                    self.b = self.b - self.learning_rate *

y[i]
309. def predict(self,X):
310.         hasil = np.dot(X,self.w)-self.b
311.         return np.where(hasil<=0,-1,1)

Above is the program code for implementation using the support vector

machine algorithm. Line 283 aims to activate the numpy library, lines 286 - 292
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have a def init that is a function constructor in a class in the python programming

language. The init function is used to initialize objects from the class. Inside the

def  init  there  are  learning rate  variables,  lambda parameters,  n_iter,  w and b.

While  self  means  that  the  method  is  owned  and  registered  in  the  class  to

distinguish methods outside and functions outside the class. Lines 291 and 292 are

given the value None, which means they have no value and are not equal to 0. The

formula  for  the  Support  Vector  Machine  algorithm  for  linear  models:  in  the

program code already has the variable w as the hyperplane being sought and b as

the hyperplane bias that is being sought.

Next on line 294-308 is a function fit that is used for machines in learning

training data. Line 295 is n_samples which contains the length of the line in data

X, line 298 has n_feature which has value 2. This n_feature variable has value 2

because in data X there are 2 columns that will be used in the analysis later. Then

line 297 is y which contains values 0 and 1. If it is 0 then hoax and if it is 1 then

real, in the above code is if it has y which is less than or equal to 0 then it is -1,

and if y is more than 0 then given a value of 1. Then line 298 there is np.zeros

gives the value of n_feature to 0 and forms an array.

Line 301 is a loop that is limited to n_iter that is 100. Similarly line 302 is

an array loop in data X, which contains i (index) and xi (data value). Next there

are conditions on lines 304 - 308 if y index times w. xi - b which is worth more

than 1 or equal to 1. If true then enter the formula at line 305 while if wrong enter

into 307 and 308.

Then lines 309 - 311 are prediction functions to produce predictive values

which will be tested using testing data. Line 310 is a linear formula from, where w

and b are obtained from the final result of the function fitting class. The last line

of line 311 is to return the result of row 310 where if y is less than 0 or equal to 0

then it is -1 and if more than 0 then it is 1.

5.1.7 Calculation of Accuracy, Precision, Recall, F1-Score
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The following program code calculates accuracy, precision, recall, f1-score

using predictions from Support Vector Machine.

312. from sklearn.metrics import confusion_matrix
313. #SVM
314. def performance(y_test_title, prediksi_svm):
315.     
316.     #matrix
317.
318. tp  =  confusion_matrix(y_test_title,

prediksi_svm).item(0) #TP
319. fn  =  confusion_matrix(y_test_title,

prediksi_svm).item(1) #FP
320. fp  =  confusion_matrix(y_test_title,

prediksi_svm).item(2) #FN
321. tn  =  confusion_matrix(y_test_title,

prediksi_svm).item(3) #TN
322.
323.
324.     # (TP + TN ) / (TP+FP+FN+TN)
325.     accuracy_svm = (tp+tn)/float((tp+fp+fn+tn))
326.
327.     # (TP) / (TP+FP)
328.     precision_svm = tp/float((tp+fp))
329.
330.     # (TP) / (TP + FN)
331.     recall_svm = tp/float((tp+fn))
332.
333.     #  2 * (Recall*Precission) / (Recall + Precission)
334.     f1score_svm=2*(recall_svm*precision_svm)/float((recall_s

vm+precision_svm))
335. return

tp,fn,fp,tn,accuracy_svm,precision_svm,recall_svm,f1score_svm

The following program code calculates accuracy, precision, recall, f1-score

using predictions from Random Forest.

336. # Random Forest
337. def performance(y_test_title, prediksi_rf):
338.     
339.     #matrix
340.
341. tp  =  confusion_matrix(y_test_title,

prediksi_rf).item(0) #TP
342. fn  =  confusion_matrix(y_test_title,

prediksi_rf).item(1) #FP
343. fp  =  confusion_matrix(y_test_title,

prediksi_rf).item(2) #FN
344. tn  =  confusion_matrix(y_test_title,

prediksi_rf).item(3) #TN
345.
346.
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347.     # (TP + TN ) / (TP+FP+FN+TN)
348.     accuracy_rf = (tp+tn)/float((tp+fp+fn+tn))
349.
350.     # (TP) / (TP+FP)
351.     precision_rf = tp/float((tp+fp))
352.
353.     # (TP) / (TP + FN)
354.     recall_rf = tp/float((tp+fn))
355.
356.     #  2 * (Recall*Precission) / (Recall + Precission)
357.     f1score_rf=2*(recall_svm*precision_svm)/float((recall_sv

m+precision_svm))
358.
359.
360.     return

tp,fn,fp,tn,accuracy_rf,precision_rf,recall_rf,f1score_rf

In section 5.1.7, the program code calculates accuracy, precision, recall,

f1-score.  First  activate  the  library  from  sklearn  namely  classification_report,

confusion_matrix. The two libraries are to search for true positive, false negative,

false  positive,  and false  negative,  as  in  lines  341-344.  The variable  tp  is  true

positive, fn is false negative, fp is false positive, and finally tn is true negative.

Then in line 347 is the formula to calculate accuracy is true positive plus

true negative after that the results are divided by the sum of true positive, false

positive, false negative, true negative.

Then  the  formula  for  calculating  precision  in  line  351  is  positive  true

divided by the sum of true positive and false positive. Next calculate the recall in

line 354 is the total positive true value divided by the results of the sum of the

total true positive values and the total false negative value. The last formula to

calculate f1-score is 2 times the product of recall and precision multiplied by the

sum of  recall  and precision.  Line 357 returns the results  of the calculation of

accuracy, precision, recall,  f1-score, true positive, false negative, false positive,

and true negative.

Line 337 to 361 is the same as line 315 - 336 except that the line uses the

prediction results using the Support Vector Machine algorithm while lines 337 to

361 use the prediction results using the Random Forest algorithm.
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5.2 Testing

5.2.1 Training data and Testing data

Table 36:  Training Data and Testing Data Tables

No Pemban
ding

All
Training

Data

Training
Data

(Hoax)

Testing
Data

(Real)

All Testing
Data

All Training
Data and

Testing Data

1 Training 
60%, 
Testing 
40%

644 283 data 361 data 456 1100

2 Training 
70%, 
Testing 
30%

760 357 data 403 data 340 1100

3 Training 
80%, 
Testing 
20%

886 413 data 473 data 214 1100

4 Training 
90%, 
Testing 
10%

1007 457 data 550 data 93 1100

Table 5.1 is a table of training data and testing data which will be tested,

and trained in a machine. Training data and testing data have a portion of each -

each as a differentiator with other data. The four data will be processed, trained

and tested using two algorithms including Random Forest algorithm and Support

Vector Machine algorithm.

5.2.2 Analysis

Table 37:  Analysis Table of the News Title section

Title

No Traini
ng

Data

Testi
ng

Data

Run
Time

similarity
to the

original
data

Random Forest Algorithm

Accuracy Precisio
n

Recall F1-
Score
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1 644 456 6 
second

295 data 64.8351648
3516483%

36.86635
94470046
1%

77.66990
2912621
35%

50%

2 760 340 6 
second

294 data 64.6153846
1538461%

36.40552
99539170
46%

77.45098
0392156
86%

49.52978
0564263
31%

3 886 214 7 
second

148 data 69.1588785
046729%

29.88505
74712643
7%

83.87096
7741935
49%

44.06779
6610169
495%

4 1007 93 7 
second

67 data 72.0430107
5268818%

39.53488
37209302
3%

100% 56.66666
6666666
664%

Title

No Traini
ng

Data

Testi
ng

Data

Run
Time

similarity
to the

original
data

Support Vector Machine Algorithm

Accuracy Precisio
n

Recall F1-
Score

1 644 456 4 
second

226 data 49.6703296
7032967%

95.39170
50691244
3%

48.59154
9295774
65%

64.38569
2068429
24%

2 760 340 5 
second

215 data 63.6094674
55621306%

24.47552
44755244
77%

70% 36.26943
0051813
47%

3 886 214 5 
second

139 data 64.9532710
2803739%

17.24137
93103448
3%

83.33333
3333333
34%

28.57142
8571428
577%

4 1007 93 5 
second

61 data 65.5913978
4946237%

30.23255
81395348
8%

86.66666
6666666
67%

44.82758
6206896
55%

Table 5.2 is the analysis table of the title section based on the table shows

that  the  time needed to  analyze  news  title  using  the  Support  Vector  Machine

algorithm is faster than the Random Forest 1-2 second difference. Random Forest

obtained the highest accuracy value of 72.04301075268818% with training data

of 1007 data and the lowest accuracy value of 64.61538461538461% with the

amount of training data of 760 data.  Then from the test  results  using Support

Vector  Machine  obtained  the  highest  accuracy  value  is  65.59139784946237%
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with  training  data  of  1007  data  and  the  lowest  accuracy  value  is

49.67032967032967% with the number of training data 644 data. Also the results

of the two algorithms in analyzing the news title section have increased accuracy.

Table 38:  Analysis Table of the News Content section

Content

No Trai
ning
Data

Testin
g

Data

Run
Time

similarity
to the

original
data

Random Forest Algorithm

Accuracy Precisio
n

Recall F1-
Score

1 644 456 7 
second

265 data 58.2417582
4175825%

12.44239
6313364
055%

100% 22.13114
7540983
605%

2 760 340 7 
second

201 data 59.4674556
2130178%

4.195804
1958041
96
%

100% 8.053691
2751677
86%

3 886 214 7 
second

134 data 62.6168224
29906534%

8.045977
0114942
53%

100% 14.89361
7021276
595%

4 1007 93 8 
second

59 data 63.4408602
1505376%

20.93023
2558139
537
%

100% 34.61538
4615384
62%

Content

No Trai
ning
Data

Testin
g

Data

Run
Time

similarity
to the

original
data

Support Vector Machine Algorithm

Accuracy Precisio
n

Recall F1-
Score

1 644 456 4 
second

212 data 46.5934065
9340659%

97.69585
2534562
2%

47.11111
11111111
1%

63.56821
5892053
97%

2 760 340 4 
second

195 data 57.6923076
92307686%

82.51748
2517482
52%

50% 62.26912
9287598
94%

3 886 214 4 
second

86 data 40.1869158
8785047%

94.25287
3563218
39%

40% 56.16438
3561643
84%
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4 1007 93 4 
second

43 data 46.2365591
39784944%

90.69767
4418604
65%

45.88235
2941176
47%

60.9375
%

Table 5.3 is a content analysis table based on the table shows that the time

needed for news content analysis using the Support Vector Machine algorithm is

faster than the Random Forest 3-4 seconds difference. Random Forest obtained

the highest accuracy value of 63.44086021505376% with training data of 1007

data and the lowest accuracy value of 58.24175824175825% with the number of

training  data  644  data.  Then  from  the  test  results  using  the  Support  Vector

Machine algorithm has the highest accuracy value of 57.692307692307686% with

training data of 760 data and the lowest accuracy value of 40.18691588785047%

with the amount of training data 886 data. The decrease in accuracy occurs in the

analysis  using  the  algorithm  support  vector  machine  which  initially

57.692307692307686% to  40.18691588785047%.  This  shows that  the  TF-IDF

weight value can affect the decrease in accuracy.
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