
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

This chapter explains about the implementation of the program. The data

is already in CSV format and processed using Python 2.7 platform. First of all

after the program reads the CSV file is to normalization data. After normalization

data, then randomize weights for all variables (date, temperature, price sales) and

hidden layer

Below is the code to allow python read csv file.

1. import csv
2. with open('datasetsku.csv') as csvfile:
3. readCSV = csv.reader(csvfile, delimiter=',')
4. line = 0
5. datasets = []
6. date = []
7. selling = []
8. total_sales = []
9. temper = []
10. stock = []
11. countrows = list(readCSV)
12. for row in tqdm(countrows, desc='Data Processed: '):
13. if line == 0:
14. line += 1
15. else:
16. if datasets is None:
17. date = row[0]
18. selling = row[1]
19. total_sales = row[2]
20. temper = row[3]
21. stock = row[4]
22. datasets = {'Date' : [date],
23. 'Selling' : [selling],
24. 'total_sales' : [total_sales],
25. 'temperature' : [temper],
26. 'stock' : [stock]}
27. else:
28. date = row[0]
29. selling = row[1]
30. total_sales = row[2]
31. temper = row[3]
32. stock = row[4]

13

14

33. datasets1 = {'Date' : [date],
34. 'Selling' : [selling],
35. 'total_sales' : [total_sales],
36. 'temperature' : [temper],
37. 'stock' : [stock]}
38. datasets.append(datasets1)

The first line to allow python read csv file.line 2 to open the csv file

named datasetsku.csv. line 3 to read the datasetsku.csv file. lines 4 until 38 to

create an array that save the contents of the datasetsku.csv file.

Below is the code to normalized data.

39. mindate = min(superdate)
40. maxdate = max(superdate)
41. minselling_price = min(superselling_price)
42. maxselling_price = max(superselling_price)
43. mintotal_sales = min(supertotal)
44. maxtotal_sales = max(supertotal)
45. mintemperature = min(supertemperature)
46. maxtemperature = max(supertemperature)
47. minstock = min(superstock)
48. maxstock = max(superstock)
49. no_date = []
50. no_selling = []
51. no_total = []
52. no_tempe = []
53. no_stock = []
54. iz = 0
55. for looping in tqdm(datasets, desc='Data Normalization: '):
56. normal_date = (superdate[iz] - mindate) / (maxdate -

mindate)
57. normal_selling = (superselling_price[iz] -

minselling_price) / (maxselling_price - minselling_price)
58. normal_total = (supertotal[iz] - mintotal_sales) /

(maxtotal_sales - mintotal_sales)
59. normal_temperature = (supertemperature[iz] -

mintemperature) / (maxtemperature - mintemperature)
60. normal_stock = (superstock[iz] - minstock) / (maxstock -

minstock)
61. no_date.append(normal_date)
62. no_selling.append(normal_selling)
63. no_total.append(normal_total)
64. no_tempe.append(normal_temperature)
65. no_stock.append(normal_stock)
66. iz += 1

Lines 39 until 48 for look the minimum and maximum values of data that

has been saved in arrays called datasets. Lines 49 until 53 create a variable for

15

each data. Lines 54 until 66 to normalize the data that has been saved in each

array.

Bellow is the code to randomize the weight of all variable

67. for i in range(n_hiddenlayer):
68. tempArrWeight = []
69. for j in range(n_var + 1):
70. tempWeightInput = random.random()
71. tempArrWeight.append(tempWeightInput)
72. WeightInput.append(tempArrWeight)

Lines 67 and 69 contain looping to randomize all the variables as many as

multiple hidden layers. Line 68 to create a temporary variable to contain the

weight. Lines 70 until 72 to get a random weight and enter it into an array named

WeightInput.

Bellow is the code to randomize the weight for hidden layers

73. for i in range(n_hiddenlayer + 1):
74. tempWeightHidden = random.random()
75. WeightHidden.append(tempWeightHidden)

Line 73 for looping as many hidden layers that been input and add bias.

Lines 74 and 75 to randomize weight and saved it in an array named

WeightHidden.

After randomize the weights, the algorithm first performs a process named

forward propagate. In this process, the goal is to calculate the output and compare

it with the expected outputs that have been set or input, but before being input to

each neuron in hidden layers, the neuron must be activated first.

Bellow is the code for activated each neuron to hidden layer

76. for j in range(len(WeightInput)):
77. tempArrWeight = WeightInput[j]
78. activation = 0.0
79. transfer_activation = 0.0
80. for k in range(len(tempArrWeight)):
81. tempWeight = tempArrWeight[k]
82. tempInput = tempArrInput[k]
83. tempActivation = tempWeight * tempInput
84. activation = activation + tempActivation
85. transfer_activation = 1.0 / (1.0 + pow(exp(1),

(activation * -1)))
86. tempArrHidden.append(transfer_activation)

16

 Line 76 for looping as many hidden layers. Line 77 to hold the weight

to temporary named tempArrWeigh.Lines 81 and 82 to saved weights from the

input and hidden layer weights. Line 83 for multiply weight input and hidden

layer. Line 84 is to add multiply results with bias. Line 85 is to activate the

hidden layer's weight and get hidden layer value.Line 86 to saved the calculation

results into an array named tempArrHidden.

Bellow is the code to activated each neuron to output layer.

87. output_net = 0.0
88. for l in range(len(WeightHidden)):
89. tempWeightHidden = WeightHidden[l]
90. hidden_value = tempArrHidden[l]
91. temp_output_net = tempWeightHidden * hidden_value
92. output_net = output_net + temp_output_net
93. output = 1.0 / (1.0 + pow(exp(1),(output_net * -1)))
94. error = ((Input4 - output)**2)

To calculate the output formula is not different from calculating the hidden

layer weight. Line 88 for looping as many hidden layers as input. Line 90 for

multiply weight and value in hidden layer. Line 92 is to add multiply results with

bias. Line 93 is to get the output value.

After calculating the output, the next step is to calculate the error. The

formula for calculating the error is "expectation - the output raised 2". Formula for

calculating the error can be seen in line 94. If the error smaller than the target

error, then the loop will stopped and saved the weight during the loop stops as the

best weight and it used for the data testing process, but if the error is greater than

the target, the repeat error is continued and the weight will be recalculated using a

formula that involves the learning rate of AI.

Bellow is the code for calculating the new weight for hidden layer.

95. delta = (Input4 - output) * output * (1 - output)
96. for p in range(len(tempArrHidden)):
97. hidden_value = tempArrHidden[p]
98. delta_weight = lrate * delta * hidden_value
99. currWeight = WeightHidden[p]
100. newWeight = currWeight + delta_weight
101. newHiddenWeight.append(newWeight)

17

Line 95 for counting delta. Line 96 for looping as many as hidden layer.

Line 97 and line 99 to get weight hidden layer and the value of the hidden

layer.Line 98 is a formula to calculate the increment or the difference between the

current weight and the best weight.Line 100 is a formula to add the current weight

with the delta weight to make it closer to the best weight.Line 101 to saved a new

weights to the newHiddenWeight array.

After the new hidden layer calculated, the next step is to calculate the new

weights for all variables.

Bellow is the code for calculating the new weight for all variable.

102. for q in range(n_hiddenlayer):
103. tempWeightHidden = WeightHidden[q+1]
104. delta_net = delta * tempWeightHidden
105. hiddenValue = tempArrHidden[q+1]
106. delta_hidden = delta_net * hiddenValue * (1 -

hiddenValue)
107. arrCurrWeight = WeightInput[j]
108. arrNewWeight = []
109. for r in range(len(tempArrInput)):
110. inputValue = tempArrInput[r]
111. delta_weight = lrate * delta_hidden * inputValue
112. currWeight = arrCurrWeight[r]
113. newWeight = currWeight + delta_weight
114. arrNewWeight.append(newWeight)
115. newInputWeight.append(arrNewWeight)

To calculate new weights, all variables are basically the same as

calculating the new weights for hidden layers. The difference from this calculation

is the delta or increment that be used is different from the delta that calculated on

the hidden layer.first, delta_net must be calculated from delta multiplication with

the current hidden weight of a hidden layer the code written in line 103. After that,

delta_hidden calculated using delta_net then multiplied by the hidden layer value

multiply. The code written in line 106. And to calculate the delta_weight multiply

the alpha (learning rate), delta_hidden and value of the variable.

Bellow is the code to save new weight for testing data

116. WeightHidden = newHiddenWeight
117. WeightInput = newInputWeight

18

Lines 116 and 117 to store new weights that have been calculated.This step

will be repeated with forward propagation until the error is smaller than target

error or epoch have reached limit. To get the total sales and stock output, you have

to do training twice to get the best weight to calculate the total sales and stock

predictions. The only difference is the variable used by total sales and stock.

The testing process in the program only using forward propagate process.

After the output has been calculated, the error also calculated. And the error is

needed to calculate the error rate (MSE). The formula to calculate the error rate

is square of error. If the error rate is smaller than the targeted error rate,then this

algorithm is successful.

Bellow is the code to calculate the error rate

118. temperror_total = math.sqrt(error_total_sales[0])
119. temperror_stock = math.sqrt(error_stock_sales[0])

Lines 118 and 119 to calculate the error rate of total sales and stock.setelah

itu output yang di keluarkan di denormalisasi.

Bellow is the code to denormalization

120. realOutput = (output * (max_stock - min_stock)) +
min_stock;

121. realOutput = (output * (maxtotal_sales - mintotal_sales)) +
mintotal_sales;

 formula for denormalization is (output * (maxD – minD)) + minD. Line

120 for calculate stock output prediction and 121 for calculate total sales output

prediction.

19

5.2 Testing

Testing is complete with hidden layer, max epoch, learning rate, the target

error inputed by the user and 365 data. Below this is some data that has been

tested and output has been denormalized.

Table 5.1: Table Prediction Result

Date Sales
Price

Temper
ature

Total
Sales

Predict
Total Sales

Stock Predict
Stock

01/04/2019 11800 35 15784 14686.0361
46746179

19680 18881.96559
2161592

02/04/2019 12000 38 24507 25105.6898
45170982

26110 26491.79377
4620124

03/04/2019 11500 36 24233 24957.0110
3211354

24380 24609.75999
603692

04/04/2019 12000 36 34196 34357.4724
04936765

35500 35954.23573
5603994

05/04/2019 11500 33 17559 16889.7046
41229742

23040 22986.76448
972044

06/04/2019 11800 36 15230 14067.2257
94424105

20400 19743.39099
6906328

07/04/2019 12000 33 26920 27766.7795
12580346

28660 29347.83509
160447

08/04/2019 11000 33 14179 13149.8572
25775064

20370 19960.98144
2845798

09/04/2019 11500 36 4217 4677.18179
27857555

7920 7753.304555
534092

10/04/2019 11500 34 13740 12510.7046
05063334

13980 12757.42020
9003212

11/04/2019 11000 30 31576 32517.9324
01248672

32750 33778.40384
3228385

...

24/03/2020 12000 37 13198 12477.6101
2527671

17820 16963.06216
95331

25/03/2020 12000 31 19013 19260.6112
30398183

24840 25240.75976
072743

20

26/03/2020 11000 30 20496 21445.5104
00390158

21720 21845.18196
7524844

27/03/2020 12000 32 17633 17588.7724
84254718

18170 17330.26283
7293943

28/03/2020 11500 38 16197 16089.1276
6488111

17230 16469.16979
128524

29/03/2020 12000 38 12121 11355.9780
35295542

13580 12487.80435
0868459

30/03/2020 11000 35 3237 4584.63884
605142

3710 5555.537836
916685

Illustration 5.1: Result Prediction total sales

21

Illustration 5.2: Result Prediction stock

22

Illustration 5.3: Result Accuracy and MSE

From the result above, the prediction is still in range of the error tolerance. The

error from that result is 3.0% and 3.7%. because the results are less than 5%, then

this study can be said to be successful with an accuracy of 92.4832308%.

	STATEMENT OF ORIGINALITY
	HALAMAN PENGESAHAN
	HALAMAN PERNYATAAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS
	KATA PENGANTAR
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Desain

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Appendix

