

 24

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

This chapter five describes implementation and testing where the implementation

would discover about the code and the explanation and the testing would discover about trial

result of algorithms and data structures.

1. bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet,
rnet, onet, threshold, factor)

2. nrof_faces = bounding_boxes.shape[0]
3. print('Detected_FaceNum: %d' % nrof_faces)

As we see on the list above, first line means the code is use to detect the face by going

to detect_face file and detect_face class to start the face recognition. After they got the face then

it counted how many face are detected in the frame.

5.2 Testing

In this sub-chapter, the project need about 1 month until this project get the last result.

First week is the beginning of the step that need to learn what is Convolutional Neural Network

and all the part’s that useful for face detection. After done by research and learning about CNN,

the next day I buy a CCTV cause the main CCTV at the house are not compatible and no one

can operate to extract the video from the CCTV. After buy the CCTV, there’s a problem because

it can’t be used for the first installation. At the same day I go to the store to get the warranty,

the staff said that we need to change the location into China so the CCTV can be detected by

the apps.

The next step after the CCTV can be used, we wait for 3 days until the CCTV and also

looking for the references code for face detection using CNN as the method. After get the video

extraction, then start to implement the code that already get from the github and many other

 25

source. After done with the 3 days of trial, then I try to extend the CCTV result until 2 weeks.

Here the result of the CCTV

After having some analysis and implementation, I do some testing which the purpose

is to answer the problem of chapter one. Here are some testing that done by me as the researcher.

First testing is how I can detect the face from full picture until become only face that seen or

become the output of the dataset.

Here are some picture of the dataset that I use for this research:

Illustration 5.1: Dataset from CCTV

Illustration 5.1: Dataset for Training the face

 26

Input Datasets Output Datasets

Illustration 5.1: Dataset for training the face

Table 5.1: Table of Detecting Faces from the Datasets Using CNN

 27

 28

As we can see from the result above, there is one result that the position of the input

dataset is different from the output dataset. This result can be done because of the further

refinement and facial landmarks positions with onet function that can be found in David

Sanberg code.

From the picture above, pimeyes is used to detect many faces in one picture. This

project use pimeyes cause this project need to save the face after detecting with the name of the

picture.

Table 5.1: Table of Detecting Faces from the Datasets Using Pimeyes

 29

5.2.1 Diagram of Analysis

 This sub-chapter give the result from the testing that already done after three weeks of

testing and collecting the video for testing. As we can see from the picture below, this project

can get the result of the diagram after detect the video that already collected from 14 days

straight. In 14 days, the face that detected in the video only 88 minutes and only get 186 frame

that consists of faces.

 As we can see in this diagram blue color is for family member, orange for stranger, and

grey is for the result that can’t detect face from the frame. It gets 160 for family, 19 for stranger

and 7 can’t detect the face.

For the final count, this project using Precision and Recall analysis to measuring the

performance whether this project is good or not.

Precision = TruePositives / (TruePositives + FalsePositives)

Recall = TruePositives / (TruePositives + FalseNegatives)

86%

10%
4%

Family Stranger No-Detection

Illustration 5.2: Diagram of the Result

Illustration 5.2: Result of Precision and Recall Analysis

