7. APPENDICES

Appendix 1.Statistical Analysis of Esters Concentration

a. Normality Test

Tests of Normality						
	Kolm	ogorov-Smi	rnov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Ethyl_acetate	.094	54	.200*	.972	54	.240
Isoamyl_acetate	.118	54	.059	.964	54	.102
Total_higher_alcohol	.141	54	.009	.959	54	.059
			100 March 100 Ma	The second se		

b. Homogeneity Test of Temperature Treatment

Test of	Homogeneity of Variance	
	in the generation of the second second	

		Levene Statistic d	lf1	df2	Sig.
Ethyl_acetate	Based on Mean	2.338	02	51	.107
Isoamyl_acetate	Based on Mean	5.359	2	51	.008
Total_higher_alcohol	Based on Mean	1,991	2	51	.147

c. Homogeneity Test of Yeast Pitching Rate Treatment

Test of Homogeneity of Variance

	S V	Levene Statistic df1	df2	Sig.
Ethyl_acetate	Based on Mean	.450 2	51	.640
Isoamyl_acetate	Based on Mean	.053 2	51	.948
Total_higher_alcohol	Based on Mean	1.487 2	51	.236

ADK

d

d. Independent Samples Test, testing whether there's a difference between batches or not

			Independe	nt Sample	es Test					
		Levene's Test f Variar	for Equality of nces				t-test for Equality	ofMeans		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidenc Diffe Lower	e Interval of the rence Upper
Ethyl_acetate	Equal variances assumed	2.242	.140	339	52	.736	01419	.04183	09813	.06975
	Equal variances not assumed			339	49.635	.736	01419	.04183	09823	.06984
Isoamyl_acetate	Equal variances assumed	1.346	.251	346	52	.731	01903	.05507	12953	.09148
	Equal variances not assumed			346	48.908	.731	01903	.05507	12970	.09164
Total_higher_alcohol	Equal variances assumed	.103	.749	.671	52	.505	.01264	.01884	02517	.05044
	Equal variances not assumed			.671	51.983	.505	.01264	.01884	02517	.05044

Appendix 2. ANOVA Analysis of Total Higher Alcohol

Dependent Variable: T	otal_higher_alcoho	bl			
	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	.204 ^a	8	.025	24.069	.000
Intercept	171.462	1	171.462	162068.614	.000
Temperature	.169	2	.085	79.992	.000
YPR	.001	2	.000	.287	.752
Temperature * YPR	.034	4	.008	7.998	.000
Error	.048	45	.001		
Total	171.713	54			
Corrected Total	.251	53	AS		
a. R Squared = .811 (A	djusted R Squared	= .777)	K		
	1 62			$V \propto V$	
	Total_higher	_alcohol		Vol!	
Duncan ^{a,b}	~/~/		t. \\\\	ノビン	
11	21	5	Subset	15	7/
Temperature	N	1/	2	3	11
10°C	18	1.7041			11
12°C	18		1.8079		11
14 °C	18	Sa		1.8337	
Sig.	NLL VILL	1.000	1.000	1.000	
a. Uses Harmonic Mea	<mark>n Sample Si</mark> ze = 1	8.000.	2	TE	1
b. Alpha = 0.05.		L		~ /	/
	50		-	\$ 11	
	Total_higher	alcohol	n R N		
Duncan ^{a,b}		" A	P R		
			Subset		
YPR	Ν		1		
3 g/l		18	1	.7782	
2 g/l		18	1	.7813	
1 g/l		18	1	.7863	
Sig				.485	

Tests of Between-Subjects Effects

a. Uses Harmonic Mean Sample Size = 18.000.

b. Alpha = 0.05.

Appendix 3. ANOVA Analysis of Ethyl Acetate

Dependent V	/ariable: E	thyl_acetate				
		Type III Sum of				
Source		Squares	df	Mean Square	F	Sig.
Corrected N	lodel	.892ª	8	.112	14.801	.000
Intercept		32.174	1	32.174	4270.296	.000
Temperature	е	.816	2	.408	54.159	.000
YPR		.033	2	.016	2.162	.127
Temperature	e * YPR	.043	4	.011	1.441	.236
Error		.339	45	.008		
Total		33.405	54	4.0		
Corrected T	otal	1.231	53	ASK	5	
a. R Square	d = .725 (A	djus <mark>ted R</mark> Squarec	= .676)		$I_{\lambda} $	
Ethyl_acetat	te	151			No.N	
Duncana,b	_	151			101	
	1	21	Subset		15	77
Temperature	e N	1	2	3	15	
10°C		18 .6390	20		17	
12°C		18	.7413			11
14 °C		18	5	.9354		11
Sig.		1.000	1.000	1.000		
a. Uses Har	monic Meal	<mark>n Sample S</mark> ize = 1	8.000.		7.7	51
b. Alpha = 0	0.05.	C.	E		(F)	1
	Ethyl_	acetate	,			
Duncan ^{a,b}	-	11	'JA	PR		
		Subs	et			
YPR	N	1	N	\leq		
2 g/l		18	.7446			
1 g/l		18	.7669			
3 g/l		18	.8042			
Sig.			.057			

Tests of Between-Subjects Effects

a. Uses Harmonic Mean Sample Size = 18.000.

b. Alpha = 0.05.

Appendix 4. ANOVA Analysis of Isoamyl Acetate

Dependent Variable: Is	oamyl_acetate					
	Type III Sum of					
Source	Squares	df	Mean Square	F	Sig.	
Corrected Model	1.226 ^a	8	.153	7.604	.000	
Intercept	19.289	1	19.289	956.672	.000	
Temperature	.896	2	.448	22.230	.000	
YPR	.112	2	.056	2.769	.073	
Temperature * YPR	.218	4	.055	2.708	.042	
Error	.907	45	.020			
Total	21.423	54				
Corrected Total	2.134	53	AS.			
a. R Squared = .575 (Adjusted R Squared = .499)						
	11 65			3		
Isoamyl_acetate						

Tests of Between-Subjects Effects

Duncan ^{a,b}	シュ	
1	5	Subset
Temperature	N	1 2 3
10°C	18	.4558
12°C	18	.5696
14 °C	18	.7676
Sig.	10	1.000 1.000 1.000

a. Uses Harmonic Mean Sample Size = 18.000

b. Alpha = 0.05.

Isoamyl_acetate

Subent

Duncan^{a,b}

		Jui	1361
YPR	Ν	1	2
2 g/l	18	.5341	
1 g/l	18	.6209	.6209
3 g/l	18		.6379
Sig.		.073	.721

a. Uses Harmonic Mean Sample Size =

18.000.

b. Alpha = 0.05.

Appendix 5. Correlation Analysis

		Temperature	YPR	Ethyl_acetate	lsoamyl_acet ate	Total_higher_ alcohol
Temperature	Pearson Correlation	1	.000	.801 ^{**}	.640**	.775**
	Sig. (2-tailed)		1.000	.000	.000	.000
	Ν	54	54	54	54	54
YPR	Pearson Correlation	.000	1	.101	.035	049
	Sig. (2-tailed)	1.000		.468	.802	.727
	Ν	54	54	54	54	54
Ethyl_acetate	Pearson Correlation	.801**	.101	1	.592**	.681**
	Sig. (2-tailed)	.000	.468		.000	.000
	Ν	54	54	54	54	54
Isoamyl_acetate	Pearson Correlation	.640	.035	.592**	1	.704***
	Sig. (2-tailed)	.000	.802	.000		.000
	N	54	A 54	54	54	54
Total_higher_alcohol	Pearson Correlation	.775	049	.681	.704**	1
	Sig. (2-tailed)	.000	.727	.000	.000	
	NISI	54	54	54	54	54

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

Appendix 6. Amount of Yeast Pitched

Yeast consistency was calculated with the following formula to determine the quantity of yeast to be pitched:

45

$$Yeast \ consistency = \frac{m3 - m1}{m2 - m1} = y * 100\% = y\%$$

Where:

M1 = mass of empty centrifuge bottle in g

- M2 = mass of centrifuge bottle with yeast slurry before centrifuging in g
- M3 = mass of centrifuge bottle with yeast slurry after centrifuging & removal of supernatant in g

Table 8. Quantity of Yeast Pitched to Wort Second Sec						
	Batch 1	Batch 2				
M1 (g)	-38.3	38.34				
M2 (g)	124.46	110.31				
M3 (g)	86.59	77.28				
Yeast Consistency	0.55	0.54				
Yeast Quantity <mark>(g/0.6L)</mark>	1.13 g/0.6L (pitch rate 1 g/L)	1.13 g/ <mark>0.6L (pit</mark> ch rate 1 g/L)				
	2.26 g/0.6L (pitch rate 2 g/L)	2.25 g/0.6L (pitch rate 2 g/L)				
\``	3.40 g/0.6L (pitch rate 3 g/L)	3.4038 g/0.6L (pitch rate 3 g/L)				

Pitch rates used for this research were 1.00, 2.00, and 3.00 g/L. The quantity of yeast slurry to be pitched was then calculated with the following formula:

$$Yeast quantity = \frac{pitch rate * volume of wort}{yeast consistency} = g of yeast$$

Appendix 7. Instruments Used in Volatile Compound Analysis

Table 9. Instruments Used in Volatile Compound Analysis

a. October 2019

c. December 2019

d.

Qu	Quality Assurance Laboratories			P.T. Multi Bintang Indonesia [TAN]		
238 e-n	32 PH Zoeter nail: Samples	woude, The Netherland ServiceCentre@Heinek	ls en.com	Tangerang Indonesia		
Pro	duct	: Heineken lager beer		Submitter:		
San	nple code	: RB-12				
San	nple date	: 09/12/2019		Sample quantity:	24 Bottle(s)	
Bot	tle date	:09/12/2019		Our reference:		
Arr	ival at QAL	: 20/12/2019		Our reference:		
Υοι	Ir reference:	RB-12		B1906019		
0	Ethylacetate			22.3 mg/l	20.0 - 25.	
4	Methanol			< 5.9 mg/L	0.00 - 6.0	
	Ethylpropio	nate	~ 1 T A	0.1 mg/L		
Q	Propanol		~ 5 ·	9.2 mg/L		
Q	Isobutanol	11	K A	17.3 mg/L		
Q	Isoamylace	tate	/ //>	3.68 mg/L	3.25 - 4.2	
Jan	HEI	NEKEN	Certificate o	r Analysis	=7	
Qu	ality Assura	ance Laboratories		P T Multi Bintang	Indonesia [TAN]	
Bu	rgemeest <mark>er S</mark>	Smeetsweg 1		Tangerang		
23) e-r	82 PH Zoeter nail: Sam <mark>ple</mark>	woude, The Netherlan ServiceCentre@Heinel	ds ken.com	Indonesia	11	
-	. N	VL				
Pro	duct	: Heineken lager beer		Submitter:	50	
Sar	nple code	: RB-01	1 Try	~ /~		
Sar	nple date	:08/01/2020	N L	Sample quantity:	24 Bottle(s)	
Bot	tle date	. 08/01/2020		Our reference:		
Arr	ival at QAL	: 24/01/2 <mark>020</mark>	G			
You	ur reference:	RB-01		P R B2000566		
Ethyl	acetate			21.4 mg/L	20.0 - 25.0	
Meth	nanol			< 5.9 mg/L	0.00 - 6.00	
Ethyl	propionate			0.1 mg/L		
Prop	anol			10.8 mg/L		
Isobi	utanol			15.1 mg/L		

e. February 2020

Appendix 9. Internship Confirmation Letter from PT Multi Bintang Indonesia TBK

Tangerang, 17 Mei 2019

Kepada Yth, Koordinator Tugas Akhir Unika Soegijapranata **up. Ibu Meiliana, S.GZ., M.S.** di Tempat.

Sehubungan dengan Proposal Tugas Akhir di perusahaan kami PT. Multi Bintang Indonesia Tbk, Brewery Tangerang di Jl. Daan Mogot KM 19 Tangerang yang diajukan oleh mahasiswi Unika Soegijapranata atas nama:

Nama : Yasmine Nathania Hudiono (NIM 17.11.0162)

maka dengan ini kami sampaikan bahwa permohonam tersebut dapat kami kabulkan untuk pelaksanaan Tugas Akhir periode: 23 September 2019 – 03 January 2020.

Kami harapkan pada Senin 23 September 2019 pukul 08.00 Wib Sdri. Yasmine tiba di Brewery Tangerang dan melapor ke Satpam dengan menunjukkan foto copy surat ini untuk selanjutnya mengikuti Safety Induction.

Fasilitas pendukung yang dapat kami berikan selama kerja praktek adalah :

1. Perlengkapan Alat Pelindung Diri (sifatnya dipinjamkan)

2. Makan siang di kantin perusahaan.

Selama menjalani Tugas Akhir, Sdri. Yasmine dibawah bimbingan dan pengawasan Human Resources Officer – bapak Sampe Sitorus (HP-08129052462).

Demikianlah kami sampaikan, atas perhatian dan kerjasama yang baik kami haturkan terima kasih.

Hormat kami, TVULTI BIRTANC INDONESIA TBK

Human Resources Manager

Tembusan:

- Brewing & Quality Manager

PT Multi Bintang Indonesia Tbk. T (62-21) 2788-0800, 2910-2800 | F (62-21) 6190-190 Jl. Daan Mogot Km. 19, Tangerang 15122, Indonesia PO Box 3264 JKT, Jakarta 10032 | multibintang.co.id

PART OF THE THEINEKEN COMPANY

4 9% PLAGIARISM APPROXIMATELY

Report #11066400

INTRODUCTIONResearch BackgroundBeer is the oldest and most popular alcoholic beverage in the world. Across the globe, there are 28 known types of beers classified by the nature of the raw materials, microbial agents used in the fermentation steps, the location of beer production, and the overall production process ADDIN (Boulton, 2001). To simplify, beers are classified according to their fermentation temperature and yeast species used to ferment them. The most widespread type of beer is lager, which is fermented by bottom fermenting yeast Saccharomyces pastorianus in lower temperatures that range from 3.3 to 13.0 C. The second type is ale beers, using top fermenting Saccharomyces cerevisiae in higher temperatures ranging from 16 to 24 C. Lager beers are fermented for long period, usually 4-12 weeks while in contrast, ale beers are fermented in short period of time, ranging from 7-10 days ADDIN (Humia et al., 2019). One of the most well-known brewing company in the world to brew lager beer is Heineken N.V. Heineken N.V. is a Dutch brewing company which has more than 165 breweries all around the world. In 2018, Heineken beers are served across 192 countries, with the production o f Heineken beer and other beer brands fully owned by Heineken N.V. reached 3.87 billion litres and 23.38 billion litres respectively ADDIN (Heineken, 2018).