
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

In this project, the data from the CSV file will be processed using

Networkx library. Based from Networkx documentation, the data structure used

is based on the adjacency list representation and implemented in Python by using

the dictionary data structure.

1. def main():
2. graph = nx.Graph
3. edges = []
4. nodes = []
5. with open('Data_Sample2/49_USCT.csv', newline='') as csvfile:

spamreader = csv.reader(csvfile, delimiter=',')
6. for row in spamreader:
7. edges.append({
8. “node_satu”: row[0],
9. “node_dua” : row[1],
10. “jarak” : int(row[2])
11. })
12. if row[0] not in nodes:
13. nodes.append(row[0])
14. if row[1] not in nodes:
15. nodes.append(row[1])
16. graph.add_edge(row[0], row[1], len=int(row[2]))

From a piece of code above is used to perform the process to generate an

initial graph that is still not processed by the algorithm, line 5 is used to open

CSV file. Line 6-11 is used to list its edges first from “node_satu” and

“node_dua” and also their length. While lines 12-15 are used to list nodes. Then

line 15 is used to create the initial graph using Networkx library.

5.1.1 Reverse-Delete Algorithm

17. import networkx as nx
18. import time

19. def main(unsorted_edges, rd_graph):
20. start = time.time()
21. edges = sorted(unsorted_edges, key = lambda i: i[‘jarak’],

reverse = True)
22. for edge in edges:

27

23. rd_graph.remove_edge(edge[‘node_satu’],
edge[‘node_dua’])

24. is_connected = nx.is_connected(rd_graph)
25. if not is_connected:
26. rd_graph.add_edge(edge[‘node_satu’], edge[‘node_dua’,

len=edge[‘jarak’]

The process of the Reverse Delete algorithm starts from sorting the edges

from the largest length to the smallest length, this can be seen in the code above

on line 21. Then after that loop for each edge that has been sorted to try to delete

the edge first, this can be seen from the code above on line 22-23. After trying to

delete it, then first check whether the edge is removed makes the graph

disconnected, if removing the edge cause will the graph disconnected, then add

the edge that was deleted to the graph again, this can be seen from the code above

on line 24-26.

27. end = time.time()
28. waktu_rd = end-start
29. return [rd_graph, waktu_rd]

The program of Reverse Delete algorithm will finish working when all

edges have been tried to delete.

5.1.2 Boruvka Algorithm

1. import networkx as nx
2. import time

3. def main(edges, distinct_nodes, graph):
4. reserved = []
5. return_graph = nx.Graph()

From a piece of code above, line 4 is used to create an empty variable

which will used to save the list of edges that will be inserted into the graph.

Meanwhile, line 5 is used to create a blank graph which will be drawn using the

edges that are included in the list.

6. start = time.time()
7. for node in distinct_nodes:
8. minlen = {

9. “node_satu” = None,
10. “node_dua” = None,
11. “jarak” = 999999
12. }
13. thisNodeEdges = []
14.

From the code above, from line 7-12 are used to initiate “minlen” at each

node, which later functions to compare length between edges. “jarak” 999999 is

used as a comparative to find the smallest length for the first time, for example, is

the value of 124 smaller than 999999, if so, set the value of 124 to be the new

“minlen”.

15. for edge in edges:
16. if edge[“node_satu” == node or edge [“node_dua”] ==

node:
17. thisNodeEdges.append(edge)

From the code above, from line 14-16 it is used to retrieve the edges at a

particular node. So for each edge, if the edge has the same node as the node in this

loop, then add that edge to the “thisNodeEdges” variable that was created on line

13 to compare its distance to the other edges.

18. for new in thisNodeEdges:
19. if new[“jarak”] < [“minlen”]
20. minlen = new
21. reserved.append(minlen)

The code above functions to determine the smallest length of each edge on

this node, so if the length is smaller than the minlen length that has been

determined earlier, then set the edge to be the new minlen. After that insert the

minlen on this node into a “reserved” variable.

22. for res in reserved:
23. return_graph.add_edge(res[“node_satu”],res[“node_dua”],le

n = res[“jarak”])

The code above function to enter each edge that has been taken from line

20 into the blank graph that has been created.

24. sorted_edges = sorted(edges, key = lambda i: i[“jarak”])
25. while not nx.is_connected(return_graph):
26. newSortedEdges = []

The code above functions to sort the edges from the smallest length to the

largest length , this is done to find the edge with the smallest length to connect

between graphs that are still not connected.

27. for edge in sorted_edges:
28. if not nx.has_path(return_graph,edge[“node_satu”],

edge[“node_dua”]:
29. newSortedEdges.append(edge)

The code above functions to retrieve edges with nodes that are still not

connected, so for each edge that has been sorted on line 24, if the two nodes are

not connected then insert this edge to the variable “newSortedEdges”. This will be

used as a candidate for connecting graphs that are still not connected.

30. for edge in newSortedEdges:
31. if not nx.has_path(return_graph, edge[“node_satu”],

edge[“node_dua]):
32. return_graph.add_edge(edge[“node_satu”],

edge[“node_dua”], len = edge[“jarak”]

In the code above it functions for each edge that has been taken on line 29,

to check one by one which edge that can connect the separate graph starting from

edges with the smallest length first.

33. end = time.time()
34. waktu_boruvka = end-start
35. return [return_graph, waktu_boruvka]

Boruvka algorithm process will stop when the graph is no longer separate.

5.2 Testing

The testing carried out in this project uses three data that have been

obtained. The first data contains a list of 12 cities in the UK as well as the 27

edges connecting these cities. Then in the second data there is a list of 22 city

names in West Germany along with 45 edges that connect between these cities. In

the third data, there are 49 list of cities in the United States along with 120 edges

that connect these cities. After that the data will be processed using the Reverse

Delete algorithm and Boruvka algorithm.

Sample 1

Illustration 5.1: Initial graph image of sample 1

From the picture above is the initial graph image of graph which

represents 12 cities of UK along with the edges that connect the cities, which is

still not processed by the algorithm, with an initial total length of 3841 miles.

Below is the detailed table of the edges and their length.

Table 5.1: Edges and Weight Sample 1
Edge Length Edge Length

Iverness - Edinburgh 156 Nottingham - Stratford 68
Iverness - Glasglow 170 Nottingham - Oxford 103

Edinburgh - Newcastle 104 Nottingham - London 128
Edinburgh - Glasglow 47 Aberystwyth - Stratford 124
Edinburgh - Liverpool 221 Aberystwyth - Brighton 285
Glasglow - Newcastle 151 Aberystwyth - Exeter 199

Glasglow - Nottingham 282 Stratford - Exeter 149
Glasglow - Liverpool 219 Stratford - Brighton 151

Newcastle - Nottingham 157 Stratford - Oxford 53
Newcastle - Liverpool 174 Oxford - Brighton 106

Liverpool - Nottingham 103 Oxford - London 56
Liverpool - Stratford 133 London - Brighton 64

Liverpool - Aberystwyth 101 Brighton - Exeter 174
Nottingham - Aberystwyth 163

32

The data above will then be received from the CSV file and processed by

the program of each algorithm, both Reverse Delete and Boruvka algorithm. After

the data is processed by the program, the results obtained by the Reverse Delete

algorithm length 1058 miles, the result are in accordance with the manual

calculation of the Reverse Delete algorithm. The result from Reverse Delete

program is shown on table bellow.

Table 5.2: Reverse Delete Program Results Table

Edge Length

Iverness - Edinburgh 156

Edinburgh - Newcastle 104

Edinburgh - Glasglow 47

Newcastle - Nottingham 157

Liverpool - Nottingham 103

Liverpool - Aberystwyth 101

Nottingham - Stratford 68

Stratford - Exeter 149

Stratford - Oxford 53

Oxford - London 56

London - Brighton 64

Program Execution Time 0.0004737377166748

After the data is processed by the program, the results obtained by the

Boruvka algorithm have a length of 1058 miles, the same as Reverse Delete

algorithm. Manual calculation of the Boruvka algorithm also yields the same

results. The results of Boruvka algorithm program is shown on the table bellow.

Table 5.3: Boruvka Program Results Table(time in seconds)
Edge Length

Iverness - Edinburgh 156
Edinburgh – Glasglow 47
Edinburgh - Newcastle 104

Newcastle - Nottingham 157
Liverpool - Aberystwyth 101
Liverpool - Nottingham 103
Nottingham - Stratford 68

Stratford - Oxford 53
Stratford - Exeter 149
Oxford - London 56

London - Brighton 64
Program Execution Time 0.0003452301025390625

From the two table above, it can be seen that the Boruvka algorithm find

MST first. After getting minimum spanning tree results from the program,

visualization of the graph can be done, where visualization in this project is still

done manually, not automatically directly through the program, both Reverse

Delete and Boruvka produce the same graph. Bellow is the visualization image of

Reverse Delete and Boruvka MST.

Illustration 5.2: Reverse Delete and Boruvka Sample 1 Visualization

Sample 2

From the picture above is the initial graph which represents 22 cities in

West Germany along with the edges that connect the cities, which is still not

processed by the algorithm. With an initial total length of 7864 Km. Bellow is the

detailed table of the edges and their length.

Table 5.4: Edges and Weight Sample 2

Illustration 5.3: Sample 2 Initial Graph

Edge Length Edge Length
Kiel - Luebeck 83 Hof - Regensburg 176
Kiel - Hamburg 97 Koeln - Aachen 85

Luebeck - Hamburg 67 Koeln - Saarbuecken 250
Hamburg - Bremen 125 Koeln – Manheim 243

Bremen - Braunschweig 171 Koeln - Wuerzburg 301
Bremen - Bielefeld 189 Aachen - Saarbuecken 243
Bremen - Muenster 172 Saarbuecken - Manheim 134

Bielefeld - Braunschweig 170 Saarbuecken - Karlsruhe 144
Bielefeld - Muenster 87 Saarbuecken - Freiburg 200

Bielefeld - Essen 152 Manheim - Karlsruhe 67
Bielefeld - Kassel 132 Manheim - Wuerzburg 195

Braunschweig - Kassel 153 Wuerzburg - Nuernberg 108
Braunschweig - Hof 334 Nuernberg - Augsburg 150

Braunschweig -
Regensburg

523 Nuernberg - Muenchen 170

Muenster - Essen 93 Nuenrberg - Regensburg 122
Essen - Aachen 123 Karlsruhe - Freiburg 136
Essen - Koeln 72 Karlsruhe - Augsburg 228
Essen - Kassel 196 Regensburg -Muenchen 125
Kassel - Koeln 243 Regensburg - Passau 121
Kassel - Hof 285 Freiburg - Augsburg 293

Kassel - Wuerzburg 209 Augsburg - Muenchen 79
Kassel - Nuernberg 308 Muenchen - Passau 170

Hof - Nuernberg 140

After that the data will be processed by the program to form its minimum

spanning tree. The result obtained by the Reverse Delete algorithm have a length

of 2504 Km. These results are in accordance with the manual calculation of the

Reverse Delete algorithm. The results from Reverse Delete program is shown on

table bellow.

Table 5.5: Reverse Delete Program Results Table(time in seconds)
Edge Length

Kiel - Luebeck 83
Luebeck - Hamburg 67
Hamburg - Bremen 125

Bremen - Braunscweig 171
Braunscweig - Kassel 153

Bielefeld - Kasel 132
Bielefeld - Muenster 87

Muenster - Essen 93
Essen - Koeln 72

Kassel - Wuerzburg 209
Hof - Nuernberg 140

Regensburg - Muenchen 125
Regensburg - Nuernberg 122

Regensburg - Passau 121
Aachen - Koeln 85

Wuerzburg - Manheim 195
Wuerzburg - Nuernberg 108
Saarbucken - Manheim 134
Manheim - Karlsruhe 67
Karlsruhe - Freiburg 136

Augsburg - Muenchen 79
Program Execution Time 0.0011403560638427734

After the data is processed by the program, the results obtained by the

Boruvka algorithm have a length of 2504 Km which is the same as the results

obtained by the Reverse Delete algorithm. The result from the manual calculation

of the Boruvka algorithm is also same as that produced by the program. The result

from Boruvka program is shown on table bellow.

Table 5.6: Boruvka Program Results Table(time in seconds)
Edge Length

Kiel - Luebeck 83
Luebeck - Hamburg 67
Hamburg - Bremen 125

Bremen - Braunscweig 171
Braunscweig - Kassel 153

Kassel - Bielefeld 132
Kassel - Wuerzburg 209
Bielefeld - Muenster 87

Muenster - Essen 93
Essen - Koeln 72

Koeln - Aachen 85
Hof - Nuernberg 140

Nuernberg - Wuerzburg 108
Nuernberg - Regensburg 122

Regensburg - Passau 121
Regensburg - Muenchen 125
Wuerzburg - Manheim 195
Saarbucken - Manheim 134
Manheim - Karlsruhe 67
Karlsruhe - Freiburg 136

Augsburg - Muenchen 79
Program Execution Time 0.0006718635559082031

From the two table above, it can be seen that the Boruvka algorithm find

MST first. After the minimum spanning tree has been formed from the program,

visualization of the path that has been selected by the Boruvka algorithm can be

done, where visualization stage in this project is still done manually, not

automatically directly from the program, both Reverse Delete and Boruvka

produce the same graph. Bellow is visualization image from Reverse Delete and

Boruvka MST.

Illustration 5.4: Visualization Of Reverse Delete and Boruvka MST sample 2

Sample 3

From the picture above is the initial graph that represents 49 cities in

America along with edges that connect these cities, which are still not processed

by the algorithm. With a total initial length of 47173 miles. The table bellow

details the edges and length.

Table 5.7: Table Detail Sample 3

Illustration 5.5: Sample 3 Initial Graph

Edge Length Edge Length
Juneau - Olympia 1769 Des Moines - Topeka 255
Juneau - Helena 1922 Des Moines - Lincoln 190

Juneau - Bismarck 2223 Lincoln - Topeka 168
Olympia - Salem 160 Lincoln - Denver 485
Olympia - Helena 629 Lincoln - Cheyenne 443
Helena - Salem 706 Cheyenne - Denver 100
Helena - Boise 487 Cheyenne - Salt Lake 439

Helena - Salt Lake 484 Salt Lake - Denver 518
Helena - Cheyenne 686 Salt Lake - Santa Fe 626

Helena - Piere 695 Salt Lake - Boise 339
Helena - Bismarck 613 Salt Lake - Carston City 546
Bismarck - Pierre 205 Boise - Carston City 450

Bismarck - Saint Paul 435 Boise - Salem 464
Saint Paul - Pierre 399 Salem - Carston City 516

Saint Paul - Des Moines 249 Salem - Sacramento 536
Saint Paul - Medison 295 Sacramento - Carston City 132

Pierre - Cheyenne 424 Sacramento - Phoenix 756
Pierre - Lincoln 393 Carston City - Phoenix 732

Piere - Des Moines 502 Carston City - Santa Fe 1068

Medison - Des Moines 292 Denver – Santa Fe 392
Medison - Springfield 265 Denver - Topeka 541
Medison - Indianapolis 330 Denver - Oklahoma City 678

Medison - Lansing 364 Topeka - Oklahoma City 293
Lansing - Indianapolis 253 Topeka - Jefferson City 204
Lansing - Columbus 249 Jefferson City - Oklahoma

City
420

Lansing - Harrisburg 347 Jefferson City - Nashville 440
Lansing - Albany 614 Dover - Annapolis 64

Lansing - Montpelier 746 Annapolis - Richmond 136
Montpelier - Albany 158 Annapolis - Charleston 386

Montpelier - Concord 116 Charleston - Richmond 317
Montpelier - Augusta 180 Charleston - Raleigh 319
Augusta - Concord 163 Charleston Frankfort 198
Augusta - Boston 162 Frankfort - Raleigh 516
Concord - Albany 148 Frankfort - Nashville 209
Concord – Boston 67 Richmond - Raleigh 154
Albany - Boston 169 Raleigh - Columbia 227

Albany - Harrisburg 293 Raleigh - Atlanta 407
Albany - Hartford 102 Raleigh - Nashville 552
Boston - Hartford 101 Nashville - Atlanta 248

Boston - Providence 49 Nashville - Little Rock 349
Providence - Hartford 72 Nashville - Oklahoma City 678

Providence - Trenton 181 Oklahoma City - Little
Rock

340

Hartford - Harrisburg 126 Oklahoma City - Santa Fe 534
Hartford - Trenton 181 Santa Fe - Austin 688

Trenton - Harrisburg 126 Santa Fe - Phoenix 480
Trenton - Annapolis 154 Phoenix - Austin 1006

Trenton - Dover 112 Little Rock - Austin 514
Harrisburg - Annapolis 112 Little Rock – Batton Rouge 343
Harrisburg – Charleston 360 Little Rock - Atlanta 522
Harrisburg - Columbus 367 Little Rock - Jackson 264
Columbus - Charleston 162 Atlanta - Jackson 381
Columbus - Frankfort 186 Atlanta - Montgomery 161

Columbus - Indianapolis 176 Atlanta - Columbia 214
Indianapolis - Frankfort 152 Columbia – Tallahasse 359
Indianapolis - Nashvile 288 Montgomery - Tallahase 211
Indianapolis - Jefferson

City
367 Montgomery - Jackson 247

Indianapolis - Springfield 209 Jackson - Tallahasse 435
Springfield - Jefferson

City
193 Jackson – Batton Rouge 160

Springfield - Des Moines 298 Austin - Batton Rouge 428

Des Moines - Jefferson
City

255 Batton Rouge - Tallahasse 443

After that the data will be processed by the program to form its minimum

spanning tree. The result obtained by the Reverse Delete algorithm have a length

of 12437 Miles. These results are in accordance with the manual calculation of the

Reverse Delete algorithm. The results from Reverse Delete program is shown on

table bellow.

Table 5.8: Table Reverse Delete Saample 3 Results(time in seconds)

Edge Length
Juneau – Olympia 1769
Olympia - Salem 160

Helena – Salt Lake 484
Bismarck - Pierre 205

Salem - Boise 464
Boise – Carston City 450

Boise – Salt Lake 339
Salt Lake - Cheyenne 439

Cheyenne - Pierre 424
Cheynne - Denver 100
Pierre - Lincoln 393

Saint Paul – Des Moines 249
Des Moines - Lincoln 190
Medison - Springfield 265

Lincoln - Topeka 168
Springfield - Indianapolis 209

Springfield – Jefferson City 193
Indianapolis – Columbus 176
Indianapolis - Frankfort 152

Lansing - Columbus 249
Columbus - Charleston 162
Harrisburg - Annapolis 112

Albany - Hartford 102
Montpelier - Concord 116

Concord - Boston 67
Augusta - Boston 162

Boston - Providence 49
Hartford - Trenton 181

Hartford - Providence 72
Trenton - Dover 112

Annapolis - Richmond 136
Annapolis - Dover 64

Frankfort - Nashville 209
Nashville - Atlanta 248

Jefferson City - Topeka 204
Topeka – Oklahoma City 293

Denver – Santa Fe 392
Santa Fe - Phoenix 480

Carston City - Sacramento 132
Richmond - Raleigh 154
Raleigh - Columbia 227
Columbia - Atlanta 214

Atlanta - Montgomery 161

Little Rock - Jackson 264
Austin – Batton Rouge 428
Baton Rouge - Jackson 160
Jackson - Montgomery 247

Montgomery - Tallahasse 211
Program Execution Time 0.006117105484008789

After the data is processed by the program, the results obtained by the

Boruvka algorithm have a length of 12437 Miles, which is the same as the results

obtained by the Reverse Delete algorithm. The result from the manual calculation

of the Boruvka algorithm is also same as that produced by the program. The result

from Boruvka program is shown on table bellow.

Table 5.9: Table Boruvka Sample 3 Results(time in seconds)
Edge Length

Juneau - Olympia 1769
Olympia - Salem 160

Salem - Boise 464
Helena – Salt Lake 484
Salt Lake - Boise 339

Salt Lake - Cheyenne 439
Bismarck - Pierre 205
Pierre - Lincoln 393

Pierre - Cheyenne 424
Boise – Carston City 450
Cheyenne - Denver 100
Denver – Santa Fe 392

Saint Paul – Des Moines 249
Des Moines - Lincoln 190

Lincoln - Topeka 168
Medison - Springfield 265

Springfield – Jefferson City 193
Springfield - Indianapolis 209
Topeka – Oklahoma City 293
Topeka – Jefferson City 204
Indianapolis - Frankfort 152
Indianapolis - Columbus 176

Frankfort - Nashville 209
Lansing - Columbus 249

Columbus - Charleston 162
Harrisburg - Annapolis 112

Annapolis - Dover 64
Annapolis - Richmond 136

Albany - Hartford 102
Hartford - Providence 72
Montpelier - Concord 116

Concord - Boston 67

Boston - Augusta 162
Boston - Providence 49

Trenton - Dover 112
Nashville - Atlanta 248
Santa Fe - Phoenix 480

Sacramento - Carston City 132
Richmond - Raleigh 154
Raleigh - Columbia 227
Atlanta - Columbia 214

Atlanta - Montgomery 161
Montgomery - Tallahasse 211
Montgomery - Jackson 247
Little Rock - Jackson 264

Jackson – Baton Rouge 160
Austin – Baton Rouge 428

Program Execution Time 0.0021924972534179688

From the two table above, it can be seen that the Boruvka algorithm find

MST first. After the minimum spanning tree has been formed from the program,

visualization of the path that has been selected by the Boruvka algorithm can be

done, where visualization stage in this project is still done manually, not

automatically directly from the program, both Reverse Delete and Boruvka

produce the same graph. Bellow is visualization image from Reverse Delete and

Boruvka MST.

Illustration 5.6: Reverse Delete and Boruvka Sample 3 Visualization

Sample 4

The function of sample 4 is to find out how much accuracy the algorithm

results are compared to the original toll road on the island of Java. The image

above represents 31 cities on the island of Java, Indonesia with 60 edges that

connect these cities, which have not been processed by the algorithm with a total

distance of 6178 Km. Bellow is the detailed table of the edge and their length.

Table 5.10: Table Detail Sample 4
Edge Length Edge Length

Cilegon - Serang 16 Purwokerto - Kebumen 74
Cilegon - Rangkasbitung 66 Pemalang - Pekalongan 35

Serang - Tangerang 66 Pekalongan - Semarang 98
Serang - Rangkasbitung 38 Kebumen - Yogyakarta 102
Rangkasbitung - Bogor 94 Kebumen - Semarang 167

Rangkasbitung - Tangerang 65 Kebumen - Salatiga 134
Tangerang - Jakarta 35 Semarang - Salatiga 58
Tangerang - Depok 50 Semarang - Yogyakarta 128

Jakarta - Bekasi 42 Salatiga -Yogyakarta 86
Jakarta - Depok 29 Salatiga - Surakarta 63
Depok - Bogor 43 Salatiga - Madiun 149
Depok - Bekasi 42 Yogyakarta - Tulungagung 223

Depok - Purwakarta 101 Yogyakarta - Surakarta 63
Bekasi - Purwakarta 79 Surakarta - Madiun 113

Bekasi - Cirebon 200 Surakarta - Tulungagung 176
Bogor - Bandung 124 Madiun - Kediri 93
Bogor - Sukabumi 63 Madiun - Mojokerto 122

Purwakarta - Cirebon 149 Mojokerto - Surabaya 52
Purwakarta - Bandung 61 Kediri - Tulungagung 34
Sukabumi - Bandung 100 Kediri - Malang 102
Bandung - Cirebon 216 Kediri - Mojokerto 80

Bandung - Tasikmalaya 114 Tulungagung - Malang 101

Illustration 5.7: Sample 4 Initial Graph

Tasikmalaya - Purwokerto 144 Tulungagung - Banyuwangi 352
Tasikmalaya - Cirebon 108 Malang - Surabaya 95

Tasikmalaya - Tegal 163 Malang - Probolinggo 113
Cirebon - Tegal 80 Malang - Banyuwangi 283

Cirebon - Purwokerto 147 Surabaya - Probolinggo 107
Tegal - Purwokerto 98 Probolinggo - Situbondo 100
Tegal - Pemalang 32 Probolinggo - Banyuwangi 197

Purwokerto - Pemalang 84 Situbondo - Banyuwangi 97

After that the data will be processed by the program to form its minimum

spanning tree. The result obtained by the Reverse Delete algorithm have a length

of 2035 Km. These results are in accordance with the manual calculation of the

Reverse Delete algorithm. The results from Reverse Delete program is shown on

table bellow.

Table 5.11: Table Reverse Delete Sample 4 Results(time in seconds)
Edges Length

Cilegon - Serang 16
Serang - Rangkasbitung 38

Rangkasbitung - Tangerang 65
Tangerang - Jakarta 35
Bogor - Sukabumi 63

Bogor - Depok 43
Jakarta - Depok 29
Jakarta - Bekasi 26

Bekasi - Purwakarta 79
Purwakarta - Bandung 61
Cirebon - Tasikmalaya 108

Cirebon - Tegal 80
Bandung - Tasikmalaya 114
Purwokerto - Pemalang 84
Purwokerto - Kebumen 74

Tegal - Pemalang 32
Pemalang - Pekalongan 35
Pekalongan - Semarang 98

Semarang - Salatiga 58
Yogyakarta - Surakarta 63

Salatiga - Surakarta 63
Surakarta - Madiun 113

Madiun - Kediri 93
Tulungagung - Kediri 34

Kediri - Mojokerto 80
Mojokerto - Surabaya 52

Surabaya - Probolinggo 107
Surabaya - Malang 95

Banyuwangi - Situbondo 97
Probolinggo - Situbondo 100
Program Execution Time 0.0019724369049072266

After the data is processed by the program, the results obtained by the

Boruvka algorithm have a length of 2035 Km, which is the same as the results

obtained by the Reverse Delete algorithm. The result from the manual calculation

of the Boruvka algorithm is also same as that produced by the program. The result

from Boruvka program is shown on table bellow.

Table 5.12: Boruvka Program Results(time in seconds)
Edge Length

Cilegon - Serang 16
Serang - Rangkasbitung 38

Rangkasbitung - Tangerang 65
Tangerang - Jakarta 35

Jakarta - Bekasi 26
Jakarta - Depok 29
Depok - Bogor 43

Bogor - Sukabumi 63
Bekasi - Purwakarta 79

Purwakarta - Bandung 61
Bandung - Tasikmalaya 114

Cirebon - Tegal 80
Cirebon - Tasikmalaya 108

Tegal - Pemalang 32
Purwokerto - Kebumen 74
Purwokerto - Pemalang 84
Pemalang - Pekalongan 35
Pekalongan - Semarang 98

Semarang - Salatiga 58
Salatiga - Surakarta 63

Yogyakarta - Surakarta 63
Surakarta - Madiun 113

Madiun - Kediri 93
Kediri - Tulungagung 34

Kediri - Mojokerto 80
Mojokerto - Surabaya 52

Surabaya - Malang 95
Surabaya - Probolinggo 107
Situbondo - Banyuwangi 97
Situbondo - Probolinggo 100
Program Execution Time 0.0009052753448486328

From the two table above, it can be seen that the Boruvka algorithm find

MST first. After the minimum spanning tree has been formed from the program,

visualization of the path that has been selected by the Boruvka algorithm can be

done, where visualization stage in this project is still done manually, not

automatically directly from the program, both Reverse Delete and Boruvka

produce the same graph. Bellow is visualization image from Reverse Delete and

Boruvka MST.

Illustration 5.8: Reverse Delete and Boruvka Visualization Sample 4

From the table and visualization above, compared to the original toll road

on the island of Java, of the total 30 lanes formed, 19 of them have the same lanes

as the original toll roads. Bellow is a table of lanes formed which is the same as

the original toll road.

Table 5.13: Table From The Same Line Of The Original Toll
Edge Length

Cilegon - Serang 16
Tangerang - Jakarta 35

Jakarta - Bekasi 26
Jakarta - Depok 29
Depok - Bogor 43

Bekasi - Purwakarta 79
Purwakarta - Bandung 61

Cirebon - Tegal 80
Tegal - Pemalang 32

Pemalang - Pekalongan 35
Pekalongan - Semarang 58

Semarang - Salatiga 58
Salatiga - Surakarta 63
Surakarta - Madiun 113

Madiun - Kediri 93
Kediri - Mojokerto 80

Mojokerto - Surabaya 52
Surabaya - Malang 95

Surabaya - Probolinggo 107
Accuracy 63%

From the table above we can see that the accuracy rate of both the Reverse

Delete and Boruvka algorithm is 63%. This result is obtained from 19 divided by

30 then multiplied by 100.

	Cover
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1 Literature Study
	3.2 Collecting Data
	3.3 Analysis
	3.4 Implementation and Testing
	3.5 Conclusion

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Desain

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Appendix

