
CHAPTER 4

ANALYSIS AND DESIGN

4.1 Analysis

To be able to implement the minimum spanning tree, a graph tree that is

undirected and has a weight is needed. In a graph tree there are three parts, namely

vertex or nodes, edges, and weights. For testing purposes in this project in order to

analyze the comparison of the Reverse-Delete and Boruvka algorithm, some

samples from the graph are needed.

Illustration 4.1: Example of tree graph that will be
used in testing

The image above is an example of a graph that will be used in testing, the

image above is a graph of 22 cities in West Germany along with 45 edges that

connecting each city. The table bellow is a detail of the data that will be used in

testing.

9

Table 4.1: Graph sample test detail

Sample Test Node Edge

1 12 27

2 22 45

3 49 120

4 31 60

Illustration 4.2: Example of Data That
Has Been Entered Into CSV File Format

From the image above, in the CSV file there is information about the

starting node, destination node, and also the distance of the edge that connects the

two nodes. This information is needed by the program to be able to generate a

weighted graph, before it is finally processed by each algorithm.

4.1.1 Reverse Delete Algorithm

The way Reverse Delete algorithm work is, take the edge that has the

biggest weight and then the edge is deleted. If after the edge is deleted and doesn’t

disconnect the graph, then it will proceed to the next biggest edge. However, if

after deleting the edge will cause the graph disconnected, then the edge will not be

deleted and will continue to the next biggest edge until there are no more edges

that can be removed from the graph. The following bellow is an ilustration.

From the picture above, it can be seen that the edge connecting between D and E

has the biggest value, so the edge will be deleted. The following bellow is an

ilustration.

Illustration 4.3: Initial graph

After the edge is removed, it can be seen from picture above that the graph

is still connected, therefore it will continue to the next biggest edge. The next

biggest edge is the one that connects node F and G, so the edge will be removed

from graph. The following bellow is an ilustration.

Illustration 4.4: Picture 1

Illustration 4.5: Picture 2

Go to the next biggest edge. From the image above it can be seen that there are

two edges that have the same weight, namely the edge that connects between node

E and G, and the edge that connects between B and D. Both have the same weight

with the value of nine. If there are two edges that have the same weight, then one

of the two edges can be freely selected to delete first. Here what will be removed

is the edge that connects between node B and D, because if the edges of E and G

are removed, the graph will be disconnected then, therefore the E and G edges are

not deleted. The following bellow is the ilustration.

Illustration 4.6: Picture 3

Then move again to the next biggest edge. From the picture above, it can be seen

that there are two edges that have the same weight, namely the edge that connects

B and C, and the edge that connects F and E. Because if edge B and C or edge F

and E deleted will not make the graph disconnected, so one edge can be randomly

selected to be deleted first. Here the edges between F and E will be deleted first.

The following bellow is the ilustration.

Illustration 4.7: Picture 4

Then move to next biggest edge. From the picture above it can be seen that the

edge that connects between node B and C has the biggest weight with the value of

eight, the same as the previously deleted edge, and because if the edge is removed

it won’t disconnect the graph then it will be deleted . The following bellow is the

ilustration.

Illustration 4.8: Picture 5

It can be seen from the picture above that there are no more edges that can be

removed, So the remaining edge will form the Minimum Spanning Tree, and the

Reverse Delete algorithm ends.

4.1.2 Boruvka Algorithm

For Boruvka algorithm, the way it works is the input of undirected graph is

defined as an individual component for each nodes, so that the spanning tree is

still empty. After that, for each node an edge will be searched with the lowest

weight that connects the node and the other node. After that, add the edge if it has

not been added into the graph. This will continue until all nodes are connected to

each other and form a Minimum Spanning Tree. The following bellow is the

ilustration.

Illustration 4.9: Initial graph

From the ilustration above. The graph will be defined as individual and empty

components between each node. The following bellow is the ilustration.

Illustration 4.10: Picture 1 Boruvka

To find the Minimum Spanning Tree, it can be started from any node, but here it

will be start from the node in alphabetical order, so it will started from node A

first. From the initial graph, it can be seen that node A has two connected edge

components. From the two edges, it can be seen that the edge that connects to the

node D has the smallest weight, therefore the edge will be added into the graph.

Following bellow is the ilustration.

Illustration 4.11: Picture 2 Boruvka

From the picture above. After node A is connected to node D, the search will

continue to the next node, namely node B. From the initial graph it can be seen

that node B has four connected edges, namely the edge that connects with node A,

node B, node C, and node E. It can be seen from the four edges, there are two

edges that have the same weight, namely the edge that connects nodes A and B

and the edge that connects node B and E, both have the same weight. Of the two

edges is free to take one of them to be included into the list, here that will be taken

is the edge that connects between node B and E. The following bellow is the

ilustration.

The proceed to the next node, namely node C. From the initial graph, it can be

seen that node C has two edges, each of wich connects between node B and C also

node C and E. Because the edge that connects C and E has the smallest weight, so

that edge is added to the list. The following bellow is the ilustration.

Illustration 4.12: Picture 3 Boruvka

The proceed continue to next node, namely node D. From the initial graph it can

be seen that there are four edges connected to node D, from the four edges it can

be seen that the edge with the smallest weight belongs to the edge that connecting

nodes A and D . Because the edge has already been added to the list, it’s not

picked up again, and will continue to the next node. The next node is E, on the

node E there are five connected edges. Of the five connected edges, the edge with

the smallest weight is the edge that connects between node C and node E. Because

the case is the same as node D before, the edge will not be taken, and will

continue to the next node, namely node F. There are three edge that connect to

node F. Edge that connects between node D and node F has the smallest weight

among the three edges, because the edge has not been added to the list, it will be

taken. The following bellow is the ilustration.

Illustration 4.13: Picture 4 Boruvka

Then go to node G, at node G it has two connected edges, the edge with least

weight is on the edge that connecting between node E and G with a weight of

nine, because the edge has not been taken, the edge will be added to the list. The

following bellow is the ilustration.

After this process, it can be seen from ilustration above that there are two separate

graph, then look for the edge with lowest weight that can unite the two graph into

Illustration 4.14: Picture 5 Boruvka

Illustration 4.15: Picture 6 Boruvka

one graph. From the initial graph, it can be seen that, the edge connecting A and B

has a lower weight than the other edge that has not been added, then the edge will

be added to the list. The following bellow is the ilustration.

From the ilustration above, it can be seen that the graph is all connected, so the

search for the Minimum Spanning Tree using Boruvka algorithm is complete.

From the initial total weight of ninety, after being processed using the Boruvka

algorithm the total weight becomes thirty-nine.

Illustration 4.16: Picture 7 Boruvka

4.2 Desain

Illustration 4.17: Flowchart
for generate tree graph

The data used to generate the graph will be entered into the CSV file

which included information about node one, node two, and their weight or

distances. For generate the initial graph, in this project will use the Networkx

library that available in python 3.

Illustration 4.18: Flowchart for Reverse Delete Algorithm

From the flowchart above, it can be seen that to be able to use the Reverse

Delete algorithm for finding MST, the tree graph that has been generated from

CSV using Networkx library, must be sorted first from the biggest edge to the

smallest edge. After the data is sorted, we check first whether the edge has been

tried to delete or not, if not then it will be deleted and continue to the next edge. If

after deleting the edge will disconnect the tree, the edge will be added back into

the tree and continue to the next edge. The process will stop when all edges are

have been tried to be removed. And the remaining edge will be the Minimum

Spanning Tree

Illustration 4.19: Flowchart for Boruvka Algorithm

For Boruvka algorithm the way it work is very different from the Reverse

Delete algorithm. From the flowchart above, to be able to use the Boruvka

algorithm to find MST, the three graph that has been generated using the

Networkx library is initialized as individual component for each node. After that

for each node the smallest edge is taken. Before the smallest edge is added to the

list, the edge will be checked first whether it has been added to the list, if the edge

has been added to the list then the search will continue to the next edge. After that,

check again if there are still graph that are still not connected, if there are any, the

algorithm will look for the smallest edge to connect the graph. If the graph are all

connected, then the search process for finding the Minimum Spanning Tree using

Boruvka algorithm is complete.

	Cover
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1 Literature Study
	3.2 Collecting Data
	3.3 Analysis
	3.4 Implementation and Testing
	3.5 Conclusion

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Desain

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Appendix

