
CHAPTER 4

ANALYSIS AND DESIGN

4.1 Analysis

4.1.1 Dataset

Train and test data were taken from the NIST Handprinted Forms and

Characters Database, which is the National Institute of Standards and Technology

which provides train data in the form of Handprinted Sample Forms from 3600

authors, 810,000 character images isolated from the form, ground truth

classification for these images. NIST has two editions the 1st Edition - March

1995 and the 2nd Edition - September 2016

The first edition provides a dataset in the form of a zip file containing

images of letters from a to z and the characters from 0 to 9 and also provides a

dataset in the form of a file in MD5 format. Meanwhile, the second edition

provides several data options with category class, merge, field, write, pages. The

data class is in the form of letters and numbers, combining data in the form of

printed word images, data fields in the form of word fields on images, writing data

in the form of handwritten characters, data pages in the form of document paper

images. For the dataset, I use the first edition which has 100,000 images with test

data. While the data used in this case is 15,015, 9006 for the train data and 6009

for the test data. The use of NIST as a dataset aims to create a train and test model

that is simple and easy to process as input to the step image extractor and

algorithm, the image character from the NIST dataset is a 128x128 image which

makes the filtering process using CV2 more effective and fast.

16

17

Table 4.1: Tabel exmaple dataset 1-10 image train

Image_train With Height

test_7a_00000 (9).png 128 128

test_7a_00000 (9).png 128 128

test_7a_00000 (98).png 128 128

test_7a_00000 (98).png 128 128

test_7a_00000 (98).png 128 128

test_7a_00000 (96).png 128 128

test_7a_00000 (9699).png 128 128

test_7a_00000 (9698).png 128 128

test_7a_00000 (9697).png 128 128

test_7a_00000 (9697).png 128 128

4.1.2 Pre-procesing Data

pre-processing of data is done by labeling x_train and y_test for train data

using 9006 images and 6009 image test data. The train and test data contain

aplahbet characters and numeric characters a to z and 0 to 9. Then the labeling

process is carried out image test will be resized to an image size of 50 so that the

incoming image has the same size. After that, each image test and image train will

be identified where the image train will be labeled X and the image test will be

labeled Y. Each image train and image test will be given a grayscale filter from

open cv and after that it will be convert to an array value which still has 3

channels which means 3 columns and 3 rows. To simplify, normalization is done

which will make each image only have 2 channels, which means it has 2 columns

and 2 rows. Changing the image to be 2 channels (black & white) is done by

dividing the image by the maximum value (255) of pixels. Furthermore, each

image will be returned to its original size. And converted to an array value using

numpy and after that it will be saved using a binary format with a pickle library

18

which will be used as an input algorithm. The results of the train and test labeling

will be saved with X_train and Y_test.

4.1.3 Image Feature Exctraction

The image extractor is in the form of a batch normalization(making image

train to have same width and height), convolutional layer that has conv2d

(convolutional layer), max-pooling (aims to find important parts of each pixel in

the train image), using relu activation (linear rectifier). use a convolutional layer

to find the important parts of the image and then maxpooling to save the most

important parts of the image with a kernel size [1,2,2,1] which means the

maxpooling kernel that will be run is 2x2. And using Relu activation is the Linear

Rectifier using the formula

fx=x+¿¿ = max (0, x)

which is used to assess and classify the pixel character if the pixel has a value of 1

then the linear rectifier will dig up the pixel to have a solid image located on that

pixel. The process

4.1.4 Algorithm

In the algorithm, the result of the feature extraction process will be entered

into the input from the algorithm with a residence layer 128 as processing the

incoming data. The hiding layer uses the sigmoid activation function. the use of

the sigmoid and tanh functions as a mathematical formula for assessing the

Illustration 4.1: Image feature ektraksion with convolutional layer
source: https://medium.com/@RaghavPrabhu/understanding-of-convolutional-

neural-network-cnn-deep-learning-99760835f148

19

introduction of character pixels from feature extraction, for the sigmoid formula in

the algorithm:

S (x)=
1

1+e−x =
ex

e−x
+1

is used to make the value of the character pixel between 1 and 0. The use of

sigmoid is used during the forgate gate process with the formula

Ft = σ(wf [ht−1, xt]+bf)

Ft= forgate gate ht-1= output previous from LSTM

wf= weight for respective gate neuron xt=current time stamp

bf=biases for the respective

the output results will be saved and processed back to the cell gate which

functions to store data for comparison with data will enter again, the cell gate uses

the formula

Ct = Ft * Ćt-1 + It * Ćt

ct= cell gate Ćt-1= current cell gate

Ft= forgate gate It= input gate

Ćt= cell memory

The image extraction data will also enter the input gate which is intended as input

data or input which will later enter the cell state as input to the cell gate. input gate

has the formula

It = σ(wf [ht−1, xt]+bi)

It=forgate gate ht-1=output previous from LSTM

wf= weight for respective gate neuron xt=current time stamp

bi= biases for the respective

the result of the input gate will multiply by

20

Ćt = tanh (xt + ht-1) * It

Ćt= cell memory ht-1=output previous from LSTM

xt=current time stamp It=input gate

tanh activasion is used to produce values that only have a range of -1 to 1 so that

the output results are easy to process and recognize. activasion tanh with the

formula

tanh (x) = 2σ (2x) −1.

Which is then stored in the cell gate. In the process of making a cell gate that is

used as memory, it is done by adding the results of the forgate gate and the sum of

the cell state, input gate

Ct = Ft * Ćt-1 + It * Ćt.

Ct=cell gate Ćt-1= current cell gate

Ft=forgate gate It=input gate

Ćt= cell memory

the results of this cell gate which will later be used as a comparison memory

whether the incoming data can be used or not used as a comparison for the

incoming data again, the cell gate is also used as a data prediction (yt). The output

gate is done by using the

Ot= σ *[ht-1, xt]*tanh

Ot=output gate xt=current time stamp

ht-1= output previous from LSTM

function to produce output (ht).

Next, train the data that has been recognized by the algorithm by adding an

optimazier with Adam as the optimization of the learing rate for the data and

calculating the accuracy, calculating the loss with softmax cross entropy. Then

21

train with epoch 10 to produce a model that has good accuracy. The use of epoch

10 is intended to train the data 10 times by recognizing the test data (Y_test) and

then producing a model that will be saved in ckpt (checkpoint) format with

tensorflow format. After going through the train process, the model has an

Accuracy: 0.9827 and a loss: 12.060161829 and saved with name lstm_ocr.model

4.1.5 Text detection and Text exctraction

In text detection and text extraction the model that has been trained will be

loaded again to detect the incoming image. In this step load the model into the

checkpoint directory using the tflearn library. tflearn will detect the saved model

based on the checkpoint file which points to the prepared model directory. The

next step is to create a class containing the letters A to Z and the numbers 0 to 1.

This class is used for the extraction part from images to text. To assist in marking

regions containing words, we use the Opencv library which is used for image

processing. image will be input using im.write then the image will be given a

grayscale filter, then using otsu binarization and dilation using the bounding box

is done by calculating the width, height and the pixel difference between the

background and text. The image will enter the grayscale filtering stage using

cv2.COLOR_BGR2GRAY then give the image back with the

cv2.THRESH_OTSU otsu binarization filter. dilation the incoming image with

cv2.dilate. The use of filters on images is used to make image processing in

finding ROI (Region of interest). The ROI (Region of interest) method is used to

mark the detected text area in the incoming image.

4.1.6 Evaluation

Steps in the evaluation are done by training the pytesseract model with the

dataset that has been prepared. train steps done with Clone the tesstrain repo at

https://github.com/tesseract-ocr/tesstrain then enter the dataset into the / tesstrain /

data / my-custom-model-ground-truth folder, run make training MODEL_NAME

= my-custom-model START_MODEL = eng TESSDATA = ~ / src / tessdata_best.

22

This pytesseract model will detect the 10 same image with different size as

lstm_ocr.model with different font. Evaluation is done with the formula

Accuracy=
(TP+TN)

(TP+FP+FN+TN)

TP:True Positive

TN:True Negative

FP:False Positive

FN:False Negative

then the results are as follows:

Lstm_ocr.model Pytesseract

Evaluation_01
Size:width =508, height =817

Font arial black
Word total=108
Word detect=107

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(107+0)

(107+0+1+0)
∗100

Evaluation_01
Size:width =508, height =817
Font arial black

Word total=108
Word detect=107

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(107+0)

(107+0+1+0)
∗100

23

 =99.074% =99.074%

Evaluation_02
Size:width =492, height =815
Font arial italic

Word total =125
Word detect = 115

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(115+3)

(115+3+0+3)
∗100

=97.520%

Evaluation_02
Size:width =492, height =815
Font arial italic

Word total =125
Word detect = 120

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(120+1)

(120+1+1+3)
∗100

=96.8%

Evaluation_03
Size:width =440, height =815
Font arial narrow

Word total=85
Word detect = 62

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(62+2)

(62+1+6+2)
∗100

=90.140%

Evaluation_03
Size:width =440, height =815
Font arial narrow

Word total=85
Word detect = 84

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(84+0)

(84+0+1+0)
∗100

=98.823%

24

Evaluation_04
Size:width =441, height =819
Font calibri light

Word total=106
Word detect=95

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(95+4)

(95+4+3+4)
∗100

=93.396%

Evaluation_04
Size:width =441, height =819
Font calibri light

Word total=106
Word detect=94

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(94+2)

(94+3+7+2)
∗100

=90.566%

25

Evaluation_05
Size:width =463, height =809
Font calibri

Word total=83
Word detect=70

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(70+4)

(70+4+5+4)
∗100

=93.396%

Evaluation_05
Size:width =463, height =809
Font calibri

Word total=83
Word detect=81

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(81+0)

(81+0+2+0)
∗100

=97.590%

Evaluation_06
Size:width =479, height =817
Font courier

Word total=135
Word detect=115

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(115+7)

(115+7+6+7)
∗100

=90.370%

Evaluation_06
Size:width =479, height =817
Font courier

Word total=135
Word detect=134

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(134+0)

(134+0+1+0)
∗100

=99.259%

26

Evaluation_07
Size:width =445, height =800
Font tahoma

Word total=132
Word detect=132

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(132+0)

(132+0+0+0)
∗100

=100%

Evaluation_07
Size:width =445, height =800
Font tahoma

Word total=132
Word detect=131

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(131+0)

(131+0+1+0)
∗100

=99.242%

Evaluation_08
Size:width =508, height =817
Font arial

Word total=125
Word detect=99

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(99+8)

(99+8+7+8)
∗100

=87.704%

Evaluation_08
Size:width =508, height =817
Font arial

Word total=125
Word detect=118

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(118+0)

(118+2+5+0)
∗100

=94.4%

27

Evaluation_09
Size:width =470, height =815
Font times new roman

Word total=113
Word detect=107

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(107+3)

(107+3+0+3)
∗100

=97.345%

Evaluation_09
Size:width =470, height =815
Font times new roman

Word total=113
Word detect=113

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(113+0)

(113+0+0+0)
∗100

=100%

28

Evaluation_10
Size:width =492, height =815

Font calibri body italic
Word total=119
Word detect=77

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(77+15)

(77+15+14+15)
∗100

=76.033%

Evaluation_10
Size:width =492, height =815

Font calibri body italic
Word total=119
Word detect=117

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(117+0)

(117+0+2+0)
∗100

=98.319%
Table 4.2: Evaluation

The use of a convolutional layer in OCR is used to recognize a dataset whether it

is graysacele or RGB so that the convolutional layer can contain the feature map

of the incoming dataset to be processed in the algorithm. At this stage the

convolutioanal layer is not used to make a difference to the process of using the

image feature extraction. Evaluation without using a convolutional layer with the

dataset changed to Train 6017 and Test 5000 , Train 3000 and Test 3000

As follows:

Train Test Accuracy Loss

9007 Image 6009 Image 0.9827 0.12060

6017 image 5000 Image 0.9826 0.04450

3000 Image 3000 Image 0.9727 0.11786
Table 4.3: Evaluation

29

Convolutional Layer Without Convolutional Layer

Size:width =508, height =817

Font arial black
Word total=108
Word detect=107

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(107+0)

(107+0+1+0)
∗100

 =99.074%

Size:width =508, height =817

Font arial black
Word total=108
Word detect=86

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(86+7)

(86+7+8+7)
∗100

=86.111%

Size:width =492, height =815
Font arial italic

Word total =125
Word detect = 115

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(115+3)

(115+3+0+3)
∗100

=97.520%

Size:width =492, height =815
Font arial italic

Word total =125
Word detect = 82

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(82+10)

(82+13+20+10)
∗100

=73.6%

30

Size:width =440, height =815
Font arial narrow

Word total=85
Word detect = 62

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(62+2)

(62+1+6+2)
∗100

=90.140%

Size:width =440, height =815
Font arial narrow

Word total=85
Word detect = 24

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(24+13)

(24+20+31+10)
∗100

=40%

31

Size:width =441, height =819
Font calibri light

Word total=106
Word detect=95

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(95+4)

(95+4+3+4)
∗100

=93.396%

Size:width =441, height =819
Font calibri light

Word total=106
Word detect=65

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(65+8)

(65+12+21+8)
∗100

=68.867%

Size:width =463, height =809
Font calibri

Word total=83
Word detect=70

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(70+4)

(70+4+5+4)
∗100

=93.396%

Size:width =463, height =809
Font calibri

Word total=83
Word detect=31

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(31+6)

(31+17+29+6)
∗100

=44.578%

32

Size:width =479, height =817
Font courier

Word total=135
Word detect=115

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(115+7)

(115+7+6+7)
∗100

=90.370%

Size:width =479, height =817
Font courier

Word total=135
Word detect=59

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(59+13)

(59+24+39+13)
∗100

=53.333%

Size:width =445, height =800
Font tahoma

Word total=132
Word detect=132

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(132+0)

(132+0+0+0)
∗100

=100%

Size:width =445, height =800
Font tahoma

Word total=132
Word detect=129

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(129+0)

(129+0+3+0)
∗100

=97.727%

33

Size:width =508, height =817
Font arial

Word total=125
Word detect=99

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(99+8)

(99+8+7+8)
∗100

=87.704%

Size:width =508, height =817
Font arial

Word total=125
Word detect=62

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(62+14)

(62+22+27+14)
∗100

=60.8%

Size:width =470, height =815
Font times new roman

Word total=113
Word detect=107

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(107+3)

(107+3+0+3)
∗100

=97.345%

Size:width =470, height =815
Font times new roman

Word total=113
Word detect=93

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(93+0)

(93+4+16+0)
∗100

=82.300%

34

Size:width =492, height =815
Font calibri body italic

Word total=119
Word detect=77

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(77+15)

(77+15+14+15)
∗100

=76.033%

Size:width =492, height =815
Font calibri body italic

Word total=119
Word detect=35

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
∗100

Accuracy=
(35+12)

(35+25+47+12)
∗100

=39.495%
Table 4.4: Table Evaluation Comparison

35

4.2 Desain

4.2.1 Flow Chart

Flowcharts explain how the program works from start to finish. The first

step was to collect the NIST dataset, after which 15,0015 images were used,

containing the characters a to z and the characters from 0 to 9. The next step was

to create labeling train data and test data. The train data and test data will be

labeled with X_train and Y_test. The data comes from the categorization of the

Start Collecting data
Pre-Procesindata

Labeling

Image
exctractor

X_train
Y_test

Data Training

Saving model

Load Model

Make Prediction
text

Illustration 1:
FlowchartEnd

36

train and test folders, in the train folder there are 9007 images and in the test

folder there are 6009 images.

After labeling, the data will enter the image extractor process, which uses

a convolutional layer as the extractor and unpools to collect important data

contained in the pixel section of the image. Then the next step is the data entered

into the algorithm (LSTM) which will be recognized and will be trained with the

algorithm and then stored in the form of a checkpoint model in the tensorflow

format. The train data that has been prepared will be loaded again to be used to

recognize the image that will be inputted to predict the letters in the image.

4.2.2 USE CASE

Collecting Data

Pre-processing
data

Train Data

Save Model

Load Model

Make prediction
result

Illustration 2: Use Case Diagram

