
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

        5.1.1 Split Data 

In this stage, it explains how to program and use the Python programming language.

At this stage it also explains how the data classification begins with sharing data for training

data and testing data. In data sharing, it is arranged based on the number of split data. The

number of split data affects the amount of training and testing data.

The following is the code for split data.

1.with open(‘i_data_sample.csv’,’rb’) as f:

2. reader= unicodecsv.reader(f)

3. i_data=list(reader)

4.def shuffle(i_data):

5. random.shuffle(i_data)

6. train_data = i_data[;int(0,7*30)]

7. test_data = i_data[;int(0,7*30)]

8. return train_data, test_data

Lines 1-3 contain commands for  loading a dataset  from a csv file. Lines 4-8 are

functions for split data. Line 5 functions to randomize and shuffle the data. Line 6 functions

train data by 70% and testing 30%. Line 8 to return train data and test data.

5.1.2 Euclidean Distance

The following is the program code for Euclidean Distance

9. def get_distance(x, xi):
10.    for i in range(len(x-1):
11.    d+=pow((float(x[i])-float(xi[i])),2)
12.  d= math.sqrt(d)
13.    return d

In lines 9 to 13, it functions to find the euclidean distance value. Euclidean distance is

based on the distance between 2 objects. Line 10 serves for the loop of the variable i in the

long range of values x-1. Line 11 functions to calculate the euclidean distance from the value

x [i] minus xi [i] then raised to the power. Line 13 returns the root.
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5.1.3 Distance

14.eu_Distance=[]

15.for j in train data:

16. eu_dist = get_distance(i, j)

17. eu_Distance.append(j[5], eu_dist))

18. eu_Distance.sort(key=operator.itemgetter(1))

19. knn=eu_Distance[:k_value}

Line 14 creates an empty list  for the range of values.  Line 15 serves to loop the

variable j in the training data. Line 16 takes the value from the euclidean distance. Line 17

serves to take the closest distance from the euclidean distance value

5.1.4 Sorted Vote  

20.  def get_voting(neighbours):
21.    # index 1 is the class
22.    classes = [neighbour[1] for neighbour in neighbours]
23.    count = Counter(classes)
24.    return count.most_common()[0][0]

Lines 20-25 have commands for sorting by class sound. On line 23, will count the

amount of data in the class. On line 24 the aim is to return the count value. On line 22, you get

a vote from the nearest neighbor based on index 1.

5.1.5 Predictions

26.  for k in knn:

27.  if k[0] == ‘g’:

28. good +=1

29. else

30. bad +=1

31. if good > bad:

32. i.append(‘g’)

33. elif good < bad:

34. i.append(‘b’)

35. else:

36. i.append(‘NaN’)

Lines 26-36 are steps or functions to get predictions. Line 26 is for loop k in knn.

Lines 27-36 are the prediction function, i.e. if k [0] equals 'g' then good is added to 1 and if it
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doesn't add bad 1. If good is greater than bad then it will print g and if good is less than bad

then it will print b and if not both then empty.

5.1.6 Accuracy

37. def compute_accuracy(tp, tn, fn, fp):

38.

39. return (tp*100)/float(tp+fp)

40. print(‘Accuracy:’, compute_accuracy(tp,tn,fn,fp) 

On lines 37-40 are functions to ensure accuracy. In line 39, the accuracy is obtained 

from the number of correct predictions with the actual correct (tp) multiplied by 100 which is 

the percentage divided by the number of tp plus fp, where fp is the number of correct 

predictions but the actual ones are late.

5.1.7 Gini Index

44. def gini_index(groups, classes):

44. n_point = float(sum([len(group) for group in 
groups]))

46. size = float(len(group))

47. p = [row[-1] for row in group].count(class_val) / 
size

48. score += p * p

49. gini += (1.0 - score) * (size / n_point)

On line 44 the function is to calculate the n_point value of adding the group length in 

the group group in groups loop.
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5.2 Testing

5.2.1  Comparison  Precision,  Recall  and  F1  Score  Without  Add  New  

Dataset

Illustration 16: Comparison Precision Between Knn Algorithms and Random

Forest Algorithms with 372 data.

Based on Illustration  16,  it  shows that  the  precision  results  from both

algorithms without adding a new dataset. If the precision results have a low value,

there is a high probability that errors will occur in the tests performed. From the

above results, the KNN algorithm gets higher results from the split data test of

60%,  70%,  80%,  90%  compared  to  the  random  forest  algorithm.  While  the

Random Forest Algorithm only gets the greatest value on the split test by 50%. So

it can be concluded that the KNN Algorithm has fewer errors in the tests carried

out than the Random Forest algorithm because the KNN Algorithm gets a higher

value than the Random Forest Algorithm.
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Illustration 17: Comparison Recall Between Knn Algorithms and Random

Forest Algorithms with 372 data.

Illustration  17  shows that  the  recall  results  of  both  algorithms without

adding a new dataset. Recall value is looking for how to get the acquisition or

amount. The greater the recall value does not guarantee a better precision value.

The smaller the False Negative (FN) value, the greater the recall value. From the

results above, the KNN algorithm gets higher results from split data testing by

50%,  60%,  70%,  80%,  90% than  the  random  forest  algorithm.  So  it  can  be

concluded that the KNN Algorithm has a better  recall  value than the Random

Forest Algorithm because it  has a higher recall  value than the Random Forest

algorithm.
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Illustration 18: Comparison F1 Score Between Knn Algorithms and Random

Forest Algorithms with 372 data.

Based on illustration 18 it proves that the average precision and recall or

f1 score of the KNN algorithm is better than the random forest algorithm. The f1

score value is needed to find a balance between precision and recall. From the

results above, it can show that the KNN algorithm is better in the balance between

precision and recall in testing training data by 50%, 60%, 70%, 80%, and 90%.
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5.2.1 Comparison Precision, Recall and F1 Score With Add New Dataset

Illustration 19: Comparison Precision with Add New Dataset.

Based on Illustration 19, it shows that the results of the accuracy of the

two algorithms by adding a new dataset. The addition of a new dataset aims to see

whether the results of the previous precision with current precision have changed

or not. If the precision results have a low value, there is a high probability of an

error in the test being carried out. The smaller the False Positive, the greater the

precision. From the results above, the KNN algorithm gets higher results than the

split test data of 50%, 60%, 70%, 90% compared to the random forest algorithm.

Meanwhile, the Random Forest Algorithm gets higher results in split testing by

80%. So it can be denied that the KNN Algorithm has fewer errors in the tests

carried out than the Random Forest algorithm because the KNN Algorithm gets a

higher value than the Random Forest Algorithm. So the addition of a new dataset
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shows that  the precision value of the two algorithms has increased due to the

increased amount of data in search of a match.

Illustration 20: Comparison Recall with Add New Dataset.

Illustration 20 shows that the recall result of both algorithms is by adding a

new dataset. Recall value is looking for how to get the acquisition or amount. The

greater  the  recall  value  does  not  guarantee  a  better  precision  value.  From the

results above, the KNN algorithm gets higher results from split data testing by

50%,  60%,  70%,  80%,  90% than  the  random  forest  algorithm.  So  it  can  be

concluded that the KNN Algorithm has a better  recall  value than the Random

Forest Algorithm because it  has a higher recall  value than the Random Forest

algorithm.

The addition of a new dataset shows that the recall value of the KNN and

random forest algorithms has increased and decreased. The split data test on the
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KNN algorithm that has increased is the split data of 60% and 90%. Meanwhile,

the Random Forest algorithm has an increase in recall value on split testing by

90%. The amount of recall value is influenced by the number of false negatives it

has.

Illustration 21: Comparison F1 Score with Add New Dataset.

Based on illustration 21 it proves that the average precision and recall or

f1 score of the KNN algorithm is better than the random forest algorithm on split

data  testing  by  50%,  60%,  70%,  and  90%.  In  contrast,  the  Random  Forest

Algorithm is better in f1 score on the split data test of 80%. The f1 score value is

needed to find a balance between precision and recall.  The addition of a new

dataset to the f1 score shows that there is an increase in the value of the f1 score

of the two algorithms both in the data split of 50%, 60%, 70%, 80% and 90%.
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