

14

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

 In this study using java programming that started with digital image input

leaves. For this digital image input I use bufferedimage library, then convert the

digital image into grayscale imagery.

1. File input = new File

(“/home/yohan/Pictures/Project/Images/daun1.jpg”);

2. img = ImageIO.read(input);
3. width = img.getWidth();
4. height = img.getHeight();

 First and Second Lines contain commands for inputting the original image

from the folder where the image is stored, while for third and fourth lines, it is useful

to read the size of the inputted image starting from the width and length of the

image.

5. for(int i=0; i<height; i++){
6. for(int j=0; j<width; j++){
7. Color c = new Color(img.getRGB(j, i));
8. int red = (int)(c.getRed()*0.299);

9. int green = (int) (c.getGreen()*0.587);

10. int blue = (int) (c.getBlue()*0.114);

11. int gray = (red + green + blue);

12. Color newcolor = new Color(gray, gray, gray);

13. img.setRGB(j, i, newcolor.getRGB());

14. }

15. }

On fifth until seventh lines, it is useful to take each pixel on the image. For

lines eigth to tenth, it is useful to take Red, Green and Blue colors, and for eleventh

to thirteenth lines is the process by which to convert red, green and blue into

grayscale shapes. It is then stored with an RGB composition value after divided by

three.

15

1. Thresholding Process.

Then enter the Threshold process, in this Threshold begins by looking for

the degree of grayness (Thres value) which is useful to separate between the object

and the background.

1. public static int RGBVal(BufferedImage img, int width, int

height, int i, int j) {

2. i = Math.max(0, Math.min(width - 1, i));
3. j = Math.max(0, Math.min(height - 1, j));
4. return img.getRGB(i, j);
5. }

 In rows 1 through 5 is a method to get every pixel on the image. In the 2nd

row to get the pixel width while for row 3 to get the pixel length.

6. public static int[] histo(BufferedImage img,int width, int

height) {

7. int interval[] = new int[256];
8. for (int i = 0; i < img.getWidth(); i++) {
9. for (int j = 0; j < img.getHeight(); j++) {
10. int p = RGBVal(img, width, height, i, j);

11. int r = (p >> 16) & 255;

12. interval[r]++;

13. }

14. }

15. return interval;

16. }

For rows 6 through 16 is a method to search for histograms, in search of

histograms required intervals, this interval is searched in rows 8 to row 12, after

which the interval is returned for processing in the next to find the boundary

between the background and foreground.

17. for (int i = 0; i < 256; i++) {

18. wg_back += histogram[i];

19. if (wg_back == 0) {

20. continue;

21. }

22. wg_fore = total – wg_back;

23. if (wg_fore == 0) {

24. break;

25. }

26. sum_back += (float) (i * histogram[i]);

27. float mean_back = sum_back / wg_back;

28. float mean_fore = (sum - sum_back) / wg_fore;

29. float varBetween = (float) wg_back * (float) wg_fore *

(mean_back - mean_fore) * (mean_back – mean_fore);

30. if (varBetween > varMax) {
31. varMax = varBetween;
32. threshold = i;
33. }

16

34. }

In rows 18 through 35 this is a method of finding grayish values that are

useful for the border between the background and the object you want to display

(foreground). On the 18th to 26th row is sorting one by one per pixel to get the

value of the pixel. Rows 20 and rows 21 are useful for finding weight background

values. While row 23 smpai line 25 is to find the value of weight foreground. In

rows 27 to 35 is the process by which the threshold values are searched by compared

to one by one with the other pixels.

35. for (int i = 0; i < img.getWidth(); i++) {
36. for (int j = 0; j < img.getHeight(); j++) {
37. val = RGBVal(img,width,height, i, j);
38. val = ((val >> 16) & 0xff);
39. if (val > thresValue) {
40. th = 255;
41. } else {
42. th = 0;
43. }
44. th = (th << 16) | (th << 8) | (th);
45. Output.setRGB(i, j, th);
46. }
47. }

Rows 36 through 48 are methods to change RGB values to black and white.

The RGB value here is symbolized by the variable 'val' with the condition that if

the val value exceeds the Threshold value then the color is changed to white while

for val value less than threshold value will be changed to black. The method for

changing the color is in rows 40 through 44. will then be stored in RGB with the

new composition. This method is on rows 45 and 46.

2. Proses Morphological (Closing)

In this morphology process is the same as thresholding, starting with making

the image into grayscale which then goes into the selection of the shape of the image

structure to be tested.

1. int size = 2 * shpSize + 1;
2. short[][] struct = new short[size][size];
3. switch (shape) {
4. case SQUARE:
5. for (int i = 0; i < size; i++) {
6. for (int j = 0; j < size; j++) {
7. struct[i][j] = 1;

8. }

17

9. }

10. break;

11. case VERTICAL:

12. for (int i = 0; i < size; i++) {

13. struct[i][shpSize] = 1;

14. }

15. break;

16. case HORIZONTAL:

17. for (int i = 0; i < size; i++) {

18. struct[shpSize][i] = 1;

19. }

20. break;

21. default:

22. for (int i = 0; i < size; i++) {

23. for (int j = 0; j < size; j++) {

24. struct[i][j] = 1;

25. }

26. }

27. }

28. return struct;

In this method is a form of structure that will be used to add or subtract

pixels to be executed.

1. for (int x = 0; x <= filWidth; x++) {
2. for (int y = 0; y <= filHeight; y++) {
3. window = (byte[]) oldData.getDataElements(x, y, sSize,

sSize, null);

4. newValue = max(window);

5. newData.setSample(x + shpSize, y + shpSize, 0, newValue);

6. }
7. }

In rows 1 through 7 is the image dilation method in the middle. On the 3rd

row to retrieve the old data element starting from the width and length and also the

forming element. After dilation in the middle of the data will be saved with a new

composition in the 5th row.

8. for (int x = 0; x < shpSize; x++) {
9. for (int y = 0; y <= filHeight; y++) {
10. window = (byte[]) oldData.getDataElements(0, y, sSize,

sSize,null);

11. newValue = max(window);

12. newData.setSample(x, y + shpSize, 0, newValue);

13. }
14. }
15. newData.setSamples(0, LoSide, shpSize, shpSize, 0,

fillArray(shpSize * shpSize, newValue));

16. window = (byte[]) oldData.getDataElements(0, 0, sSize, sSize,
null);

17. newValue = max(window);
18. newData.setSamples(0, 0, shpSize, shpSize, 0, fillArray(shpSize

* shpSize, newValue));

18

Rows 8 through 18 are methods for dilation on the left edge of an object. In

the 10th row it is useful to retrieve the old data element starting from the length and

width to then stored in the 12th row. And for the 15th row it is useful to add data

and in line to 16 it is useful to retrieve the old data and coupled with the new data

to be stored in the 18th row.

19. for (int x = RSide; x < imgWidth; x++) {
20. for (int y = 0; y <= filHeight; y++) {
21. window = (byte[]) oldData.getDataElements(filWidth, y,

sSize, sSize, null);

22. newValue = max(window);

23. newData.setSample(x, y + shpSize, 0, newValue);

24. }
25. }
26. newData.setSamples(RSide, LoSide, shpSize, shpSize, 0,

fillArray(shpSize * shpSize, newValue));

Rows 19 through 26 are methods for dilation on the right edge of an object.

On the 21st row it is useful to retrieve old data and then stored in the 23rd row. after

that the 26th line is useful for adding data by modifying arrays in new data.

27. for (int y = LoSide - 1; y < imgHeight; y++) {
28. for (int x = 0; x <= filWidth; x++) {
29. window = (byte[]) oldData.getDataElements(x, filHeight,

sSize, sSize, null);

30. newValue = max(window);

31. newData.setSample(x + shpSize, y, 0, newValue);

32. }
33. }

In lines 27 through 33 is a method to dilation on the bottom edge of the

object. In row 29 is a method to retrieve old data and stored in method in row 31.

34. for (int y = 0; y < shpSize; y++) {
35. for (int x = 0; x <= filWidth; x++) {
36. window = (byte[]) oldData.getDataElements(x, 0, sSize, sSize,

null);

37. newValue = max(window);
38. newData.setSample(x + shpSize, y, 0, newValue);
39. }
40. }
41. newData.setSamples(RSide, 0, shpSize, shpSize, 0,
fillArray(shpSize * shpSize, newValue));

Rows 34 through 41 are methods for dilasiing the upper edges of objects.

On the 36th row it is useful to retrieve the old data as well as the structur element

data and then stored in the 38th row. then lined up to 41 is useful for adding data by

modifying arrays already stored in the new data.

19

1. for (int x = 0; x <= filWidth; x++) {

2. for (int y = 0; y <= filHeight; y++) {

3. window = (byte[]) oldData.getDataElements(x, y, sSize,

sSize,null);

4. newValue = min(window);

5. newData.setSample(x + shpSize, y + shpSize, 0, newValue);

6. }

7. }

In rows 1 to 7 is a method to do erosion in the middle of the image. On the

3rd row it is useful to retrieve old data and be combined with the forming element

and then stored in the 5th row.

8. for (int x = 0; x < shpSize; x++) {

9. for (int y = 0; y <= filHeight; y++) {

10. window = (byte[]) oldData.getDataElements(0, y, sSize,

sSize, null);

11. newValue = min(window);

12. newData.setSample(x, y + shpSize, 0, newValue);

13. }

14. }
15. newData.setSamples(0, LoSide, shpSize, shpSize,

0,fillArray(shpSize * shpSize, newValue));

16. window = (byte[]) oldData.getDataElements(0, 0,

sSize,sSize,null);

17. newValue = min(window);
18. newData.setSamples(0, 0, shpSize, shpSize,0,

fillArray(shpSize*shpSize,newValue));

In lines 8 to 18 is a method used to erosion the edge of the drawing line on

the left. On the 10th row it is useful to retrieve old data by adding data from the

structur element to be subsequently stored in the 12th row. For the 15th row is new

data by adding pixels and then stored in the 18th row.

19. for (int x = RSide; x < imgWidth; x++) {
20. for (int y = 0; y <= filHeight; y++) {
21. window = (byte[]) oldData.getDataElements(filWidth, y,

sSize, sSize, null);

22. newValue = min(window);

23. newData.setSample(x, y + shpSize, 0, newValue);

24. }

25. }

26. newData.setSamples(RSide, LoSide, shpSize, shpSize, 0,

fillArray(shpSize * shpSize, newValue));

In lines 19 to 26 is a method used to erosion the right edge. In row 21 is a

method to retrieve old data with structur element and stored in the 23rd row. on the

26th row is new data to add pixels on the right side.

27. for (int y = LoSide - 1; y < imgHeight; y++) {
28. for (int x = 0; x <= filWidth; x++) {

20

29. window = (byte[]) oldData.getDataElements(x, filHeight,

sSize, sSize, null);

30. newValue = min(window);

31. newData.setSample(x + shpSize, y, 0, newValue);

32. }
33. }

In rows 27 to 33 is a method to do erosion on the lower edges. On the 29th

row it is useful to retrieve the old data then stored back in the 31st row.

34. for (int y = 0; y < shpSize; y++) {
35. for (int x = 0; x <= filWidth; x++) {
36. window = (byte[]) oldData.getDataElements(x, 0, sSize,

sSize, null);

37. newValue = min(window);

38. newData.setSample(x + shpSize, y, 0, newValue);

39. }
40. }
41. newData.setSamples(RSide, 0, shpSize, shpSize, 0,

fillArray(shpSize * shpSize, newValue));

42. return erodedImg;

In rows 34 to 42 is a method to do erosion at the top edge. On the 36th row

it is useful to retrieve old data with structur element and stored in the 38th row. line

41 is useful for creating new data by adding pixels.

43. BufferedImage dilatedImg, closedImg;
44. Dilation dilation = new Dilation(shape, shapeSize);
45. Erosion erosion = new Erosion(shape, shapeSize);
46. dilatedImg = dilation.execute(img);
47. closedImg = erosion.execute(dilatedImg);

Line 44 is a method for creating dilation classes, and row 45 is for creating

erosion classes. On line 46 is a method to call the dilation class and 47 to call the

erosion class with the dilation image.

21

3. PSNR dan MSE

After both images are entered into the algorithm, it will be compared to

determine which algortima is good for segmenting the image of the leaves.

1. for(int i=0;i<height;i++)

2. {

3. for(int j=0;j<width;j++)

4. {

5. Color P1 = new Color(Img1.getRGB(j,i));

6. Color P2 = new Color(Img2.getRGB(j,i));

7. double R_P1 = (double)(P1.getRed());

8. double R_P2 = (double)(P2.getRed());

9. double G_P1 = (double)(P1.getGreen());

10. double G_P2 = (double)(P2.getGreen());

11. double B_P1 = (double)(P1.getBlue());

12. double B_P2 = (double)(P2.getBlue());

13. if(R_P1>R_img1)

14. {

15. R_img1=R_P1;

16. }

17. if(G_P1>G_img1)

18. {

19. G_img1=G_P1;

20. }

21. if(B_P1>B_img1)

22. {

23. B_img1=B_P1;

24. }

25. if(R_P2>R_img2)

26. {

27. R_img2=R_P2;

28. }

29. if(G_P2>G_img2)

30. {

31. R_img2=R_P2;

32. }

33. if(B_P2>B_img2)

34. {

35. R_img2=R_P2;

36.

37. R_MSE=R_MSE+Math.pow((R_P2-R_P1),2);

38. G_MSE=G_MSE+Math.pow((G_P2-G_P1),2);

39. B_MSE=B_MSE+Math.pow((B_P2-B_P1),2);

40. }

41. }

 In Rows 5 to 12 is a method to get RGB from each image 1 or 2. For lines

13 to 36 is a comparison of RGB between image 1 and image 2. And on the 37th to

39th rows is the result of saving the MSE value of each RGB.

42. R_MSE = R_MSE/(width*height);

43. G_MSE = G_MSE/(width*height);

22

44. B_MSE = B_MSE/(width*height);

45. MSE = (R_MSE+G_MSE+B_MSE)/3;

46. R_PSNR = 10.0 * logbase10(Math.pow(Math.max(R_img1,R_img2), 2)
/ R_MSE);

47. G_PSNR = 10.0 * logbase10(Math.pow(Math.max(G_img1,G_img2), 2)
/ G_MSE);

48. B_PSNR = 10.0 * logbase10(Math.pow(Math.max(B_img1,B_img2), 2)
/ B_MSE);

49. PSNR = (R_PSNR+G_PSNR+B_PSNR)/3;

 on lines 42 through 44 is the MSE value of each RGB divided by the size

of the image. While on the 45th row is the MSE value of the image. On the 46th to

48th row is a method to calculate the PSNR value of each RGB and on the 49th row

is a method to calculate the PSNR value of the image.

23

5.2 Testing

5.2.1. Grayscale

The first process that will be done is to convert the original image to

grayscale image. This process starts with the original image input to be further

detected the value of the RGB and will be summed and red pixel * 0,299, Green

pixel * 0,587 and Blue pixel * 0,114.

Original Image Grayscale Image

24

25

5.2.1. Original Image to Grayscale Image

5.2.2. Thresholding

For the next step go to the Threshold algorithm. The first thing to do is

to look for threshold value (degree of grayness) as the boundary between the

background and the object. In looking for this Threshold value, it takes a

histogram calculation to know the frequency of RGB values from images. After

obtaining the number of frequencies of these values, the limit will be calculated

by calculating weight background, weight foreground, mean background, mean

foreground and variance background and also variance foreground. After that

it will be looped in each pixel to find the minimum frequency value as the

boundary between the background and also foreground or often referred to as

the degree of Grayness.

After obtaining a degree of grayness or often referred to as the T value,

the value will be the limit and if the RGB value exceeds the T value then the

RGB value will turn white, while the RGB value less than T will change to

black.

26

Grayscale Image Thresholding Image

Thresholding : 151

Thresholding : 132

Thresholding : 144

27

Thresholding : 126

Thresholding : 144

Thresholding : 136

Thresholding : 144

28

5.2.2. Grayscale Image to Thresholding Image

Thresholding : 140

Thresholding : 152

Thresholding : 137

In the experiment, a writer too uses biner images. A was undertaken

almost similar but not through the grayscale, or like directly to the algorithm. A

binary image is done to enter into algorithms. The next image will be handled

by the algorithms and images are going out with the new and different kept

folder.

29

5.2.3. Binary Image to Thresholding Image

Binary Images Threshold Image

Thresholding : 12

Thresholding : 12

Thresholding : 12

Thresholding : 11

Thresholding :11

30

5.2.3. Morphologi (Closing)

In morphology algorithm, the first step that is done is the same as

Thresholding is to convert digital imagery into grayscale imagery to then be

reprinted with grayscale image output.

 When finished with grayscale output, the image will be input back

into the morphological process (Closing). Morphological Closing process is a

combination of morphological dilasi followed by Morphological Erosion,

meaning that the image undergoes pixel addition around the image called

Morphological Dilasi and subsequently undergoes pixel reduction or so-called

Morphological Erosion based on the arrangement of structur elements.

 Grayscale Image Morphological Image (Closing)

31

32

5.2.4 Grayscale Image to Morphological Image

After that the Morphological image will be saved with the new folder.

Then the Morphological image will be changed to binary imagery or black and

white imagery, then it will be saved in a different folder.

Morphological Image (Closing) Biner Image

33

34

5.2.5. Morphological Image to Binary Image

 After performing with colored pictures, followed by the binary. The

one conducted together with colored pictures, it is just a direct shot into the

algorithm.

35

5.2.6. Binary Image to Morphological Image

Binary Images Morphological Closing Images

36

5.2.4. PSNR dan MSE

The way PSNR and MSE work is to insert the initial image to be further

compared with thresholding imagery and also Morphological (Closing)

imagery. In this case, the way to calculate MSE is to reduce between the pixels

of the initial image with thresholding imagery and morphology imagery to be

further raised to 2 and then divided by the image area. Then in calculating

PSNR using log 10 with the highest pixel value and then divided by MSE value.

MSE value is considered good if approaching with a value of 0 while for PSNR

is said to be good if approaching the value of 30 db., here I use 40 times the

image to be compared.

Original Image Image Comparison

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

37

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

38

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

Thresholding

Morphological (Closing)

5.2.7. MSE and PSNR color images

39

The following is the PSNR and MSE in figure binary. A was aimed to

examine the pictures binary equal to colored pictures.

Binary Images PSNR and MSE

Thresholding

Morphological Closing

Thresholding

Morphological Closing

Thresholding

Morphological Closing

40

 Thresholding

Morphological Closing

Thresholding

Morphological Closing

5.2.8. MSE and PSNR Binary images

41

5.3.1. MSE

5.3. Experiment Results

Daun
1

Daun
3

Daun
5

Daun
7

Daun
9

Daun
11

Daun
13

Daun
15

Daun
17

Daun
19

Daun
21

Daun
23

Daun
25

Daun
27

Daun
29

Daun
31

Daun
33

Daun
35

Daun
37

Daun
39

0

2000

4000

6000

8000

10000

12000

14000

MSE

Thresholding Morphological (Closing)

D
au

n
 1

D
au

n
 2

D
au

n
 3

D
au

n
 4

D
au

n
 5

D
au

n
 6

D
au

n
 7

D
au

n
 8

D
au

n
 9

D
au

n
 1

0

D
au

n
 1

1

D
au

n
 1

2

D
au

n
 1

3

D
au

n
 1

4

D
au

n
 1

5

D
au

n
 1

6

D
au

n
 1

7

D
au

n
 1

8

D
au

n
 1

9

D
au

n
 2

0

D
au

n
 2

1

D
au

n
 2

2

D
au

n
 2

3

D
au

n
 2

4

D
au

n
 2

5

D
au

n
 2

6

D
au

n
 2

7

D
au

n
 2

8

D
au

n
 2

9

D
au

n
 3

0

0

100

200

300

400

500

600

700

800

900

MSE BINARY

Morphological Thresholding

42

5.3.2. PSNR

Daun
1

Daun
3

Daun
5

Daun
7

Daun
9

Daun
11

Daun
13

Daun
15

Daun
17

Daun
19

Daun
21

Daun
23

Daun
25

Daun
27

Daun
29

Daun
31

Daun
33

Daun
35

Daun
37

Daun
39

0

2

4

6

8

10

12

14

16

18

PSNR

Thresholding Morphological (Closing)

D
au

n
 1

D
au

n
 2

D
au

n
 3

D
au

n
 4

D
au

n
 5

D
au

n
 6

D
au

n
 7

D
au

n
 8

D
au

n
 9

D
au

n
 1

0

D
au

n
 1

1

D
au

n
 1

2

D
au

n
 1

3

D
au

n
 1

4

D
au

n
 1

5

D
au

n
 1

6

D
au

n
 1

7

D
au

n
 1

8

D
au

n
 1

9

D
au

n
 2

0

D
au

n
 2

1

D
au

n
 2

2

D
au

n
 2

3

D
au

n
 2

4

D
au

n
 2

5

D
au

n
 2

6

D
au

n
 2

7

D
au

n
 2

8

D
au

n
 2

9

D
au

n
 3

0

0

10

20

30

40

50

60

PSNR BINARY

Morphological Thresholding

