CHAPTER S
IMPLEMENTATION AND TESTING

5.1 Implementation

In this study using java programming that started with digital image input
leaves. For this digital image input I use bufferedimage library, then convert the
digital image into grayscale imagery.

1.File input = new File
(“/home/yohan/Pictures/Project/Images/daunl. jpg”) ;

2.img = ImageIO.read (input);

3.width = img.getWidth() ;

4. height = img.getHeight() ;

First and Second Lines contain commands for inputting the original image
from the folder where the image is stored, while for third and fourth lines, it is useful

to read the size of the inputted image starting from the width and length of the

image.

5. for(int i=0; i<height; i++){

6. for (int j=0; j<width; j++) {

7. Color c = new Color(img.getRGB(j, i))
8. int red = (int) (c.getRed()*0.299);

9. int green = (int) (c.getGreen()*0.587)
10. int blue = (int) (c.getBlue()*0.114);
11. int gray = (red + green + blue);

12. Color newcolor = new Color(gray, gray, gray):;
13. img.setRGB(j, i, newcolor.getRGB()) ;
14. }

15. }

On fifth until seventh lines, it is useful to take each pixel on the image. For
lines eigth to tenth, it is useful to take Red, Green and Blue colors, and for eleventh
to thirteenth lines is the process by which to convert red, green and blue into
grayscale shapes. It is then stored with an RGB composition value after divided by

three.

14

15
1. Thresholding Process.

Then enter the Threshold process, in this Threshold begins by looking for
the degree of grayness (Thres value) which is useful to separate between the object

and the background.

1. public static int RGBVal (BufferedImage img, int width, int
height, int i, int j) {

i = Math.max(0, Math.min(width - 1, i));

j = Math.max (0, Math.min(height - 1, j));

return img.getRGB (i, j);

(S0 R VVIN V)

In rows 1 through 5 is a method to get every pixel on the image. In the 2nd

row to get the pixel width while for row 3 to get the pixel length.

6. public static int[] histo(BufferedImage img,int width, int

height) {
7. int interval[] = new int[256];
8. for (int i = 0; i < img.getWidth(); i++) {
9. for (int j = 0; j < img.getHeight(); j++) {
10. int p = RGBVal(img, width, height, i, Jj);
11. int r = (p >> 16) & 255;
12. interval[r]++;
13. }
14. }
15. return interval;
16. }

For rows 6 through 16 is a method to search for histograms, in search of
histograms required intervals, this interval is searched in rows 8 to row 12, after
which the interval is returned for processing in the next to find the boundary

between the background and foreground.
17. for (int i = 0; i < 256; i++) {

18. wg_back += histogram[i];

19. if (wg_back == 0) {

20. continue;

21. }

22. wg_fore = total - wg_back;

23. if (wg_fore == 0) {

24. break;

25. }

26. sum back += (float) (i * histogram[i]);

27. float mean back = sum back / wg_back;

28. float mean fore = (sum - sum back) / wg_fore;

29. float varBetween = (float) wg back * (float) wg_fore *
(mean_back - mean fore) * (mean_back - mean fore);

30. if (varBetween > varMax) {

31. varMax = varBetween;

32. threshold = i;

33. }

16
34. }

In rows 18 through 35 this is a method of finding grayish values that are
useful for the border between the background and the object you want to display
(foreground). On the 18th to 26th row is sorting one by one per pixel to get the
value of the pixel. Rows 20 and rows 21 are useful for finding weight background
values. While row 23 smpai line 25 is to find the value of weight foreground. In
rows 27 to 35 is the process by which the threshold values are searched by compared

to one by one with the other pixels.

35. for (int i = 0; i < img.getWidth(); i++) {
36. for (int j = 0; j < img.getHeight(); j++) {

37. val = RGBVal (img,width,height, i, j);
38. val = ((val >> 16) & Oxff);

39. if (val > thresValue) {

40. th = 255;

41. } else {

42, th = 0;

43. }

44 . th = (th << 16) | (th << 8) | (th);
45. Output.setRGB(i, j, th);

46. }

47. }

Rows 36 through 48 are methods to change RGB values to black and white.
The RGB value here is symbolized by the variable 'val' with the condition that if
the val value exceeds the Threshold value then the color is changed to white while
for val value less than threshold value will be changed to black. The method for
changing the color is in rows 40 through 44. will-then be stored in RGB with the

new composition. This method is on rows 45 and 46.
2. Proses Morphological (Closing)

In this morphology process is the same as thresholding, starting with making
the image into grayscale which then goes into the selection of the shape of the image

structure to be tested.

1.int size = 2 * shpSize + 1;

2.short[][] struct = new short[size][size];
3. switch (shape) {

4 case SQUARE:

5 for (int i = 0; i < size; i++) {

6. for (int j = 0; j < size; j++) {

7 struct[i] [j] = 1;

8 }

9.

10.
11.
12.
13.
14.
15.
le6.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

17
}

break;
case VERTICAL:
for (int i = 0; i < size; i++) {
struct[i] [shpSize] = 1;
}
break;
case HORIZONTAL:
for (int i = 0; i < size; i++) {
struct[shpSize] [i] = 1;
}
break;
default:
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
struct[i] [j] = 1;
}
}
}

return struct;

In this method is a form of structure that will be used to add or subtract

pixels to be exccuted.

1.
2.
3.

S oy 0o

for (int x = 0; x <= filWidth; x++) {
for (int y = 0; y <= filHeight; y++) {
window = (byte[]) oldData.getDataElements(x, y, sSize,
sSize, null);
newValue = max (window) ;
newData.setSample(x + shpSize, y + shpSize, 0, newValue);

In rows 1 through 7 is the image dilation method in the middle. On the 3rd

row to retrieve the old data element starting from the width and length and also the

forming element. After dilation in the middle of the data will be saved with a new

composition in the 5th row.

8.
9.

10.

11.
12.
13.
14.
15.

16.

17.
18.

for (int x = 0; x < shpSize; x++) {
for (int y = 0; y <= filHeight; y++) {
window = (byte[]) oldData.getDataElements(0, y, sSize,
sSize,null) ;
newValue = max (window) ;
newData.setSample(x, y + shpSize, 0, newValue);
}
}
newData.setSamples (0, LoSide, shpSize, shpSize, 0,
fillArray (shpSize * shpSize, newValue));
window = (byte[]) oldData.getDataElements(0, 0, sSize, sSize,
null) ;
newValue = max (window) ;
newData.setSamples (0, 0, shpSize, shpSize, 0, fillArray (shpSize
* shpSize, newValue));

18
Rows 8 through 18 are methods for dilation on the left edge of an object. In

the 10th row it is useful to retrieve the old data element starting from the length and
width to then stored in the 12th row. And for the 15th row it is useful to add data
and in line to 16 it is useful to retrieve the old data and coupled with the new data

to be stored in the 18th row.

19. for (int x = RSide; x < imgWidth; x++) {
20. for (int y = 0; y <= filHeight; y++) {

21. window = (byte[]) oldData.getDataElements (filWidth, vy,
sSize, sSize, null);

22. newValue = max (window) ;

23. newData.setSample(x, y + shpSize, 0, newValue);

24. }

25. }

26. newData.setSamples (RSide, LoSide, shpSize, shpSize, o,

fillArray (shpSize * shpSize, newValue));
Rows 19 through 26 are methods for dilation on the right edge of an object.
On the 21st row it is useful to retrieve old data and then stored in the 23rd row. after

that the 26th line is useful for adding data by modifying arrays in new data.

27. for (int y = LoSide - 1; y < imgHeight; y++) {
28. for (int x = 0; x <= filWidth; x++) {

29. window = (byte[]) oldData.getDataElements(x, £filHeight,
sSize, sSize, null) ;

30. newValue = max(window) ;

31. newData.setSample(x + shpSize, y, 0, newValue);

32. }

33. }

In lines 27 through 33 is a method to dilation on the bottom edge of the

object. In row 29 is a method to retrieve old data and stored in method in row 31.

34. for (int y = 0; y < shpSize; y++) {
35. for (int x = 0; x <= filWidth; x++) {
36. window = (byte[]) oldData.getDataElements(x, 0, sSize, sSize,
null) ;
37. newValue = max (window) ;
38. newData.setSample(x + shpSize, y, 0, newValue);
39. }
40. }
41. newData.setSamples (RSide, 0, shpSize, shpSize, O,
fillArray (shpSize * shpSize, newValue));

Rows 34 through 41 are methods for dilasiing the upper edges of objects.
On the 36th row it is useful to retrieve the old data as well as the structur element
data and then stored in the 38th row. then lined up to 41 is useful for adding data by

modifying arrays already stored in the new data.

19

1. for (int x = 0; x <= filWidth; =x++) {
2. for (int y = 0; y <= filHeight; y++) {
3. window = (byte[]) oldData.getDataElements(x, y, sSize,

sSize,null) ;

newValue = min (window) ;

newData.setSample (x + shpSize, y + shpSize, 0, newValue) ;
}
}

In rows 1 to 7 is a method to do erosion in the middle of the image. On the

o0

3rd row it is useful to retrieve old data and be combined with the forming element

and then stored in the 5th row.

8. for (int x = 0; x < shpSize; x++) {

9. for (int y = 0; y <= filHeight; y++) {

10. window = (byte[]) oldData.getDataElements(0, y, sSize,

sSize, null);

11. newValue = min (window) ;

12. newData.setSample(x, y + shpSize, 0, newValue);

13. }

14. }

15. newData.setSamples (0, LoSide, shpSize, shpSize,
0,fillArray (shpSize * shpSize, newValue)) ;

16. window = (bytell) oldData.getDataElements (0, 0,

sSize,sSize,null);

17. newValue = min (window) ;

18. newData.setSamples (0, Loy shpSize, shpSize, 0,
fillArray (shpSize*shpSize,newValue)) ;

In lines 8 to 18 is'a method used to erosion the edge of the drawing line on
the left. On the 10th row it is useful to retrieve old data by adding data from the
structur element to be subsequently stored in the 12th row. For the 15th row is new

data by adding pixels and then stored in the 18th-row.

19. for (int x = RSide; x < imgWidth; x++) {
20. for (int y = 0; y <= filHeight; y++) {

21. window = (byte[]) oldData.getDataElements(filWidth, vy,
sSize, sSize, null);

22. newValue = min (window) ;

23. newData.setSample(x, y + shpSize, 0, newValue);

24. }

25. }

26. newData.setSamples (RSide, LoSide, shpSize, shpSize, 0,
fillArray (shpSize * shpSize, newValue)) ;

In lines 19 to 26 is a method used to erosion the right edge. In row 21 is a
method to retrieve old data with structur element and stored in the 23rd row. on the

26th row is new data to add pixels on the right side.

27. for (int y = LoSide - 1; y < imgHeight; y++) {
28. for (int x = 0; x <= filWidth; x++) {

29. window = (byte[]) oldData.getDataElements(x, £filHeight,

sSize, sSize, null);

30. newValue = min (window) ;

31. newData.setSample(x + shpSize, y, 0, newValue);
32. }

33. }

In rows 27 to 33 is a method to do erosion on the lower edges. On the 29th

row it is useful to retrieve the old data then stored back in the 31st row.

34. for (int y = 0; y < shpSize; y++) {
35. for (int x = 0; x <= filWidth; =x++) {

36. window = (byte[]) oldData.getDataElements(x, O,
sSize, null);

37. newValue = min (window) ;

38. newData.setSample(x + shpSize, y, 0, newValue);

39. }

40. }

41. newData.setSamples (RSide, 0, shpSize, shpSize,

fillArray (shpSize * shpSize, newValue)) ;
42. return erodedImg;

In rows 34 to 42 is a method to do erosion at the top-edge. On the 36th row

it is useful to retrieve old data with structur element and stored in the 38th row. line

41 is useful for creating new data by adding pixels.

43. BufferedImage dilatedImg, closedImg;

44. Dilation dilation = new Dilation(shape, shapeSize);
45. Erosion erosion = new Erosion(shape, shapeSize) ;
46. dilatedImg = dilation.execute (img);

47. closedImg = erosion.execute (dilatedImg) ;

Line 44 is a method for creating dilation classes, and row 45 is for creating

erosion classes. On line 46 is a method to call the dilation class and 47 to call the

erosion class with the dilation image.

3. PSNR dan MSE

21

After both images are entered into the algorithm, it will be compared to

determine which algortima is good for segmenting the image of the leaves.

1. for (int i=0;i<height;i++)

2. {

3. for (int j=0;j<width;j++)

4. {

5. Color Pl = new Color (Imgl.getRGB(j,i)):
6. Color P2 = new Color (Img2.getRGB(j,1i)):;
7. double R P1 = (double) (Pl.getRed())
8. double R P2 = (double) (P2.getRed());
9. double G_P1 = (double) (Pl.getGreen()) ;
10. double G_P2 = (double) (P2.getGreen()) ;
11. double B P1 = (double) (Pl.getBlue());
12. double B P2 = (double) (P2.getBlue());
13. if (R_PI>R imgl)

14. {

15. R imgl=R Pl;

16. }

17. if (G_P1>G imgl)

18. {

19. G_imgl=G_P1l;

20. }

21. if (B_P1>B imgl)

22. {

23. B_imgl=B P1;

24. }

25. if (R_P2>R img2)

26. {

27. R _img2=R_P2;

28. }

29. if (G_P2>G_img2)

30. {

31. R _img2=R P2;

32. }

33. if (B_P2>B img2)

34. {

35. R_img2=R P2;

36.

37. R_MSE=R MSE+Math.pow((R_P2-R P1),2);
38. G_MSE=G_MSE+Math.pow ((G_P2-G_Pl),2);
39. B_MSE=B_MSE+Math.pow ((B_P2-B P1),2);
40. }

41. }

In Rows 5 to 12 is a method to get RGB from each image 1 or 2. For lines

13 to 36 is a comparison of RGB between image 1 and image 2. And on the 37th to

39th rows is the result of saving the MSE value of each RGB.
42. R _MSE = R MSE/(width*height);

43. G_MSE

G_MSE/ (width*height) ;

22
44. B_MSE = B MSE/(width*height);
45. MSE = (R_MSE+G_MSE+B_MSE)/3;
46. R PSNR = 10.0 * logbaselO(Math.pow(Math.max(R_imgl,R _img2), 2)

/ R_MSE) ;

47. G_PSNR = 10.0 * logbasell (Math.pow(Math.max(G_imgl,G_img2), 2)
/ G_MSE);

48. B PSNR = 10.0 * logbasel(O(Math.pow(Math.max (B _imgl,B_img2), 2)
/ B_MSE) ;

49. PSNR = (R_PSNR+G_PSNR+B_PSNR)/3;

on lines 42 through 44 is the MSE value of each RGB divided by the size
of the image. While on the 45th row is the MSE value of the image. On the 46th to
48th row is a method to calculate the PSNR value of each RGB and on the 49th row

is a method to calculate the PSNR value of the image.

23
5.2 Testing

5.2.1. Grayscale

The first process that will be done is to convert the original image to
grayscale image. This process starts with the original image input to be further
detected the value of the RGB and will be summed and red pixel * 0,299, Green
pixel * 0,587 and Blue pixel * 0,114.

Original Image Grayscale Image
T —

25

|5.2.1. Original Image to Grayscale Image

5.2.2. Thresholding

For the next step go to the Threshold algorithm. The first thing to do is
to look for threshold value (degree of grayness) as the boundary between the
background and the object. In looking for this Threshold value, it takes a
histogram calculation to know the frequency of RGB values from images. After
obtaining the number of frequencies of these values, the limit will be calculated
by calculating weight background, weight foreground, mean background, mean
foreground and variance background and also variance foreground. After that
it will be looped in each pixel to find the minimum frequency value as the
boundary between the background and also foreground or often referred to as

the degree of Grayness.

After obtaining a degree of grayness or often referred to as the T value,
the value will be the limit and if the RGB value exceeds the T value then the
RGB value will turn white, while the RGB value less than T will change to
black.

26

Thresholding Image

Grayscale Image

r—

Thresholding : 151

Thresholding : 132

&

Thresholding : 144

27

*

Thresholding : 1

g

Thresholdmg

»

Thresholdmg 136

Thresholding : 144

28

\

Thresholding : 140

Thresholding : 152

)] 4

Thresholding : 137

|5.2.2. Grayscale Image to Thresholding Image|

In the experiment, a writer too uses biner images. A was undertaken
almost similar but not through the grayscale, or like directly to the algorithm. A
binary image is done to enter into algorithms. The next image will be handled
by the algorithms and images are going out with the new and different kept
folder.

29

Binary Images

Threshold Image

Thresholding : 12

Thresholding : 12

Thresholding : 12

Thresholding : 11

P 4
~
h
-
@

Thresholding :11

5.2.3. Binary Image to Thresholding Image|

30

5.2.3. Morphologi (Closing)

In morphology algorithm, the first step that is done is the same as
Thresholding is to convert digital imagery into grayscale imagery to then be
reprinted with grayscale image output.

When finished with grayscale output, the image will be input back
into the morphological process (Closing). Morphological Closing process is a
combination of morphological dilasi followed by Morphological Erosion,
meaning that the image undergoes pixel addition around the image called
Morphological Dilasi and subsequently undergoes pixel reduction or so-called

Morphological Erosion based on the arrangement of structur elements.

Grayscale Image Morphological Image (Closing)

31

32

et

o

-

L

-

|5.2.4 Grayscale Image to Morphological Image|

After that the Morphological image will be saved with the new folder.

Then the Morphological image will be changed to binary imagery or black and

white imagery, then it will be saved in a different folder.

Morphological Image (Closing)

Biner Image

34

|5.2.5. Morphological Image to Binary Image|

After performing with colored pictures, followed by the binary. The
one conducted together with colored pictures, it is just a direct shot into the

algorithm.

35

Binary Images

Morphological Closing Images

P4
~
T
-
@

&
~
«
-
@

5.2.6. Binary Image to Morphological Image|

36

5.2.4. PSNR dan MSE

The way PSNR and MSE work is to insert the initial image to be further
compared with thresholding imagery and also Morphological (Closing)
imagery. In this case, the way to calculate MSE is to reduce between the pixels
of the initial image with thresholding imagery and morphology imagery to be
further raised to 2 and then divided by the image area. Then in calculating
PSNR using log 10 with the highest pixel value and then divided by MSE value.
MSE value is considered good if approaching with a value of 0 while for PSNR
is said to be good if approaching the value of 30 db., here I use 40 times the

image to be compared.

Original Image Image Comparison

I— I'j

yohan@Adti=jPictures/Project/Operations java MSE_PSAR

MSE = 4620.465102458687
PSNR = 12,34 @B

Thresholding

yohan@Adi:~/Pictures/Project/Operation§ java MSE_PSNR
MSE = 4602.6347667134182
PSNR.=~12.36-08

Morphological (Closing)

yohan@Adi:~/Pictures/Project/Operation§ java MSE_PSNR
MSE = 3667.4440720169637
PSNR = 12.88 dB

Thresholding

yohan@Adi:~/Pictures/Project/Operation$ java HSE_ESNR

MSE = 3661.03318859880034
PSNR = 12.89 dB
Morphological (Closing)

yohan@Adi:~, res/Project/Operation§ java MSE PSNR

MSE = 3175, 632865999952
PSNR = 13.7 dB

Thresholding

yohan@Aai :~/ es/Project /Operation$ java MSE PSNR
MSE = 3139, 5554683140324

PSNR = 13,77 B
Morphological (Closing)

yohan@Adi:~/Pictures/Project/Operation$ java MSE_PSNR
MSE = 3225.8474147606503
PSNR = 14.17 dB

Thresholding

yohan@Adi: ~/Pictures /ProfectOperations java MSE PSNR
MSE = 3216.521113056868

PSNR = 14.24 dB
Morphological (Closing)

yohan@hdi~fPtctures /Project/OperationS java MSE_PSNR
HSE = 3990,89661986914
PSAR = 12.74 dB

Thresholding

yohan@Adi:~/Pictures/Profject/Operationd java MSE PSNR
MSE = 3956,954849054784

PSNR = 12.79 dB
Morphological (Closing)

yohan@Adi:~/ es/Project/Operation$ java MSE PSNR
MSE = 2546. 8349131860303

Thresholding

erationg java NSE_PSIR

MSE -‘2533 604702447013

PSNR = 14.6 B
Morphological (Closing)

yohan@Adi:~/Pictures/Project/Operation§ java MSE_PSNR

MSE = 2723.65236002046
PSNR = 14.29 dB

Thresholding

yohan@Adi:~/Pictures/Project/Operation§ java MSE PSR
MSE = 2711, 718334279978

PSNR = 14.32 dB
Morphological (Closing)

yohan@Adi: «/Pictures/Project/Operationy java MSE PSNR
SE = 3207.4460536013144
PSNR = 14 dB

Thresholding

yohan@ad1: ~fPictures/Proiect J0peration$ java MSE_PSNR
MNSE = 3155,319402945003
PSNR = 14.03 dB

Morphological (Closing)

yohan@Ady;~/Pictures /Project/Opecation$ java MSE PSNR
NSE = 4363, c57080455505
PSNR = 11.92 B

Thresholding

yohan@Adi:~/Pictures/Pro’ject/Operation$ java MSE PSNR
MSE = 4320.365844307939

PSNR = 11,96 dB
Morphological (Closing)

yohan@Adi:~/Pictures/Project/Operation java MSE_PSNR
MSE = 4351, 115054590602

PSR = 12.4 dB
Thresholding

i es[Project/Operation§ java MSE PSNR
MSE = 4343.154337034849

PSNR = 12.42 dB

Morphological (Closing)

5.2.7. MISE and PSNR color images

39

The following is the PSNR and MSE in figure binary. A was aimed to

examine the pictures binary equal to colored pictures.

Binary Images

PSNR and MSE

/Operation$ java MSE_PSNR

PSNR = 40.82 B
Thresholding

yohan@Adi:~/Pictures/Project/Operation$ java MSE_PSNR
SE = 287.7604776119403
PSNR = 23.54 4B

Morphological Closing

yonan@hdi:~/Pictures/ProjectOperation java MSE PSNR

yohan@Adi:~/Pictures/Project/Operations java MSE_PSNR

Morphological Closing

yohan@Adi:~/Pictures/Project/Operations java MSE_ESNR
MSE = .3893890471668
PSNR = 48.18 B

Thresholding

yohan@Adi:~/Pictures/Project/Operation$ java MSE_PSNR

JISE = 38.6382288698955
PSNR = 32.26 dB

Morphological Closing

yohan@Adi:~/Pictures/Project/Operation§ java MSE PSR

MSE = 5.3763902439024
PSNR = 40.83 dB

Thresholding

yohan(Ad:~/Pictures/Project/Operation$ java MSE PSNR

MSE = 3.1593781842884

Morphological Closing

5.2.8. MISE and PSNR Binary images

41
5.3. Experiment Results

MSE
14000

12000

10000

(N @)

8000 \ | \ ~
[/ ®
6000 / \ ‘ A
| V.o N /

9 =), [\, P ‘;“‘ f \/ﬁ
4 e /) \ | o / 3
4000 ‘ T an, \/ _ N

2000

DaunDaun DaunDaunDaunDaun DaunDaunbaun DaunDaun DaunDaun DaunDaun DaunDaun Daun DaunDaun
1 3 5 7 11 //ISENEETE 19 2% 23, o™ 29 31 33 35 37 39

=@==Thresholding Morphological (Closing)

MSE BINARY
900

800

700
600
500
400
300
200

100

AN M S N O N OO A NM S DO NO0 OO A NMS O N 0 O
c c c € c e c c e H dd A A d d A9 d~NNN~~~~Q~®
5 3 3 3 3 3 3 3 3 € ¢
EERREREREEEBERBI22232323222323232322223:23:2223:32:3
© ©
[a e a el e a e e e a e e a el a e el a N a el a]

Morphological e==@==Thresholding

5.3.1. MSE

18

16

14

12

10

60

50

40

30

20

10

Daun 1

1

Daun 2

3

Daun 3

Daun 4

5

Daun 5

Y

Daun 6

9,

Daun 7

Daun 8

11

)

7~

13

PSNR

/N
\

SO, 19

«=@==Thresholding

Daun 9
Daun 10
Daun 11

A 23 Ry 27

29

Morphological (Closing)

PSNR BINARY

Daun 12
Daun 13
Daun 14
Daun 15
Daun 16
Daun 17

Morphological

Daun 18
Daun 19
Daun 20
Daun 21
Daun 22
Daun 23
Daun 24
Daun 25
Daun 26
Daun 27

Daun 28
Daun 29
Daun 30

«=@==Thresholding

31

N
{
\ / X J
‘ 3
/ 4 \) 4 AN
o /\
/ o O /

~

33

42

L

Daun Daun Daun Daun Daun Daun‘Daun Daun Daun Daun.Daun.Daun Daun Daun Daun Daun Daun Daun Daun Daun

35 37 39

/

/

/o

