
40

40

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

5.2 Vector Space Model

In this section the vector space model algorithm uses the data train that has been

provided to test the test data. So that it will produce a sentiment from the test data to be tested

and the results of the weight. Start by calculating tf-idf to get the weight of each letter.

1. for test in tfidf_test:

2. hasilakar_test_train = []

3. y = 0

4. for train in hasil_train:

5. tmp = 0

6. for t in kataunik:

7. tmp += train[t]*test[t]

8. res = tmp/hasilkuadrat_test[i]*hasilkuadrat_train[y]

9. hasilakar_test_train.append(res)

10. y+=1

11. hasil.append(hasilakar_test_train)

The code above is a cosine similarity that works in Vector Space Model. On line 7 the

tmp variable will be filled with the multiplication of the training data (train) weight and the

testing data (test) weight. Which then on line 8 will be divided from the square root of the

weight of the training data and testing data that has been previously calculated. The results of

these calculations will be calculated how close it is to the training data document and generate

sentiment depending on the calculation.

5.3 Naive Bayes

Similar to the vsm calculation, Naive Bayes also calculates the weight of each word

using tf-idf. Which is then followed by using the Naive Bayes algorithm to get the sentiment

results from the test data.

12. from sklearn import naive_bayes

41

41

13. Stopwords = set(stopwords.words('english'))

14. vectorizer = TfidfVectorizer(use_idf=True, lowercase=True,

strip_accents='ascii', stop_words=Stopwords)

15. y=data.sentiment

16. x=vectorizer.fit_transform(data.text)

17. x_train,x_test,y_train,y_test=train_test_split(x,y,random_st

ate=12)

18. clf= naive_bayes.MultinomialNB()

19. clf.fit(x_train,y_train)

20. word=pd.read_csv(r"C:\Users\ASUS\Documents\skripsiveda\data\

150test.csv")

21. testing = word.iloc[:,0]

22. test = vectorizer.transform(testing)

23. test1 = clf.predict(test)

24. print(test1)

The code above is a calculation for the Naive Bayes algorithm. To determine the

sentiment from the test data, it is necessary to calculate the tf-idf from the training data that

has positive and negative labels. Code 13 and 14 are codes for calculating tf-idf using the

library and set stopwords to English. Then on line 18 is a library from Naive Bayes that uses

multinomials.

5.4 Testing

 In the VSM method, there are three results obtained, namely a training data document

that is similar to testing data, then the sentiment obtained from the algorithm's prediction and

42

42

the weight of the test data obtained from the above calculations. Which later will be obtained

the results of TP, TN, FP, FN by manually checking. Then calculated to get accuracy, precision,

recall and f1-score.

The following is a calculation of the Naive Bayes algorithm. The results obtained from

calculations using Naive Bayes are only the sentiment results from the test data. What will be

the same will also be calculated for accuracy, precision, recall and f1-score by manually

checking to get TP, TN, FP, FN.

43

43

From the tests that have been carried out, the following is the final result obtained from

this project.

44

44

With the results of the chart above, it is found that these two algorithms have almost the

same performance. Because these two algorithms are both classified as supervised algorithms.

With a maximum level of performance in the scheme of 150 training data and 50 data testing.

45

45

Illustration 5.1: Evaluation

 The picture above is a way to evaluate the program that has been made. By manually

calculating how many TP, TN, FP, FN, the accuracy, precision, recall and F1-score are

obtained. With column A for label prediction from VSM, while column B is the correct label

and has been checked manually then column C is for Naive Bayes. The following is a

calculation of accuracy, precision, recall and F1-Score for Vector Space Model and Naive

Bayes from the image above.

Vector Space Model

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
=

(18 + 12)

(18 + 14 + 5 + 12)
= 61%

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
=

(18)

(18 + 14)
= 78%

46

46

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
=

(18)

(18 + 5)
= 56%

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
=
(78 × 56)

(78 + 56)
= 65%

Naive Bayes

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
=

(18 + 12)

(18 + 4 + 15 + 12)
= 61%

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
=

(18)

(18 + 4)
= 81%

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
=

(18)

(18 + 15)
= 54%

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
=
(81 × 54)

(81 + 54)
= 65%

.

