BAB III

PERANCANGAN ALAT

3.1. Pendahuluan

Bab ini akan membahas tentang rancangan alat yang dibuat dalam proyek *pattern recognition* untuk deteksi posisi pada AGV berbasis Raspberry Pi 4 Model B. Yang terdiri dari cara meng-*install Raspbian Buster* sebagai perangkat lunak pada SD *Card* sebagai penyimpan data yang memiliki kapasitas 64 GB. Memakai aplikasi VNC *Viewer* yang diperuntukan pada pengoperasian Raspberry Pi pada layar laptop. Setelah desktop Raspberry Pi terbuka, dilanjutkan dengan meng-*install Open* CV sebagai pustaka dalam penggunaan bahasa pemrograman Python. Untuk perangkat kerasnya membutuhkan Raspberry Pi 4 Model B sebagai mikroprosesor, Raspberry Pi *Camera* sebagai sensor, dan rangkaian *step-down chooper* untuk mengkonversi daya dari *battery*. Pada Gambar 3.1 di bawah ini, merupakan blok digram alur kerja dari *Pattern Recognition* untuk deteksi posisi pada AGV.

Gambar 3.1 Blok Diagram Alur Kerja Pattern Recognition

Pada blok diagram di atas merupakan cara kerja Pattern Recognition untuk deteksi posisi pada AGV (Automated Guided Vehicle) berbasis Raspberry Pi dengan keluaran data digital. Alat ini dilengkapi dengan *input* sensor berupa kamera Raspberry Pi yang akan membaca beberapa pola (huruf abjad) yang telah diatur. Pada bagian kendali memanfaatkan Raspberry Pi *4 Model B* dengan RAM 4 GB dan SD *Card* 64 GB. Raspberry Pi akan mendapatkan sumber daya dari catu berupa *accu* yang telah dikonversi menggunakan rangkaian *step-down chooper*.

Pola yang ditangkap oleh kamera akan diolah oleh sistem Raspberry Pi guna menunjukan atau mendeteksi posisi terkini dari AGV. Sehingga Raspberry Pi akan memberi keluaran berupa titik koordinat (x,y) yang selanjutnya akan dikirimkan untuk memutar motor sesuai perintah yang telah ditentukan.

3.2. Penjelasan Blok Pola

Penelitian ini menggunakan 5×3 posisi koordinat dengan memiliki ukuran 40 cm²/kotak, dimana koordinat ini nantinya dipakai untuk menentukan letak posisi "x" dan "y" dari AGV. Rancangan pola dapat dilihat pada Gambar 3.2.

Gambar 3.2 Rancangan Pola

3.3. Penjelasan Blok Raspberry Pi Camera

Setelah pola dicetak pada kertas putih, kamera memiliki peran untuk menangkap pola. Kemudian, kamera akan mengirimkan data pola tersebut ke Raspberry Pi yang selanjutnya akan diolah lebih lanjut untuk mengetahui titik koordinat (x,y) atau posisi dari AGV. Gambar 3.3 merupakan contoh tampilan layar monitor saat kamera mengangkap pola.

Gambar 3.3 Kamera Menangkap Pola

3.4. Penjelasan Blok Catu Daya

Sumber yang digunakan pada penelitian ini adalah *accu* 12 Volt dengan kapasitas 3,5 Ah (*Ampere Hour*). Nantinya, *accu* akan dipakai untuk men-*supply* rangkaian-rangkaian pada AGV lainnya seperti Raspberry Pi.

Untuk membagi tegangan, maka dibutuhkan rangkaian *step-down chooper*. Rangkaian ini difungsikan untuk menurunkan tegangan ke 10 Volt dan arus ke 3 Ampere yang menjadi *supply* daya pada Raspberry Pi. Rangkaian *step-down chooper* dihubungkan pada rangkaian pembagi tegangan. Gambar 3.4 merupakan desain dari rangkaian pembagi tegangan.

3.5. Penjelasan Blok Raspberry Pi

Raspberry Pi ialah modul komputer kecil yang juga memiliki *input* dan *output* sama halnya pada *board* mikrokontroler. Sebelum mengoperasikan Raspberry Pi, dibutuhkan penginstalan sistem operasi khusus. Karena dalam penelitian ini menggunakan Raspberry Pi 4 Model B, sistem operasi yang dipakai yaitu *Raspbian Buster*. Di bawah ini merupakan langkah-langkah untuk menginstal sistem operasi *Raspbian Buster*, yaitu:

a. *Search* dan buka web resmi dari Raspberry Pi. Untuk alamat web atau *link* dapat dilihat pada Gambar 3.5 di bawah ini.

c. Kemudian *scroll* pada tampilan tersebut. Klik pada menu *tool "Raspbian"* dengan gambar logo spiral berwarna merah, seperti pada Gambar 3.7.

← → ♂ ŵ	♥ A https://www.raspberrypi.org/downloads/	⊠ ☆	$\overline{\tau}$	lii\ 🖸	۲	3
	- Rasperry Pilmager for Ubuntu					
	Alternatively, use the links below to download OS images which can be manually copied to an SD card.					
	Recovery					
	If your Raspberry Pi 4 will not boot, it is possible that the SPLEEPROM has become corrupted. To check, remove the SD) card,				
	disconnect the device from power, then reconnect it. If the green LED does not flash, this indicates that the EEPROM has corrupted.	is become				
	Raspberry PI 45 EERROM 1. Find an SD card that is empty, or does not contain any data you want to keep; it will be completely erased of all da	ata during this				
	Gambar 3.7 Tampilan menu tool "Raspbian"					

d. Setelah terbuka, maka akan tertampil tiga pilihan *software* yang memiliki fungsi berbeda-beda. Pada penelitian ini, telah di-*install* menu "*Raspbian Buster* with desktop and recommended sotware". Kemudian, klik "download ZIP" dibawah menu tersebut. Yang dapat dilihat pada Gambar 3.8.

(←) → C ① ① ▲ http://www.faspberrypi.org/downloads//sephpan/	🗉 😻 🗉
Applian Buster with desktop and commence softwarz Buster Life	
Version: Pebruary 2020 Release date: 2020-02-13 Kernel version: 4.19 Ster 4334 MS Pelease notes Pipelose notes SHA-256: 1286 661 705555 6580 3Decasi E 739467411b45eba766a5205434b0745ea7370e	

Gambar 3.8 Tampilan Menu Software yang Telah Di-install

e. Jika sudah ter-*download*, maka langkah selanjutnya yaitu mengekstrak file tersebut pada PC yang kemudian disalin ke SD *Card* dengan kapasitas 64 GB.

Sebelum disalin, SD *Card* harus diformat menggunakan SD *Formatter* seperti pada Gambar 3.9 di bawah ini.

SDFormatter V3.1	×
	Format your drive. All of the data on the drive will be lost when you format it.
	SD, SDHC and SDXC Logos are trademarks of SD-3C, LLC.
Drive :	✓ Refresh
Size :	Volume Label :
Format Option :	Option
OUICK FORMAT, FO	RMAT SIZE ADJUSTMENT OFF
ALR?	FORMAL
Can	abor 30 SD Formatter

Setelah diformat dan disalin pada SD *Card*, lakukan *write* pada aplikasi Win32DiskImager yang ada pada *file*. Kemudian buka *folder* "raspbian-busterfull.img" pada file. Lalu klik "*write*", seperti pada Gambar 3.10.

Gambar 3.10 Write SD Card

f. Bila telah selesai di *write*, masukkan SD *Card* ke dalam Raspberry Pi. Hidupkan Raspberry Pi, lalu hubungkan dengan layar monitor yang disambungkan menggunakan kabel VGA *to Micro* HDMI. Tujuannya yaitu untuk memastikan apakah mekanisme operasi *Raspbian Buster* dapat beroperasi dengan baik.

3.6. Penjelasan Blok Titik Koordinat

Setelah diolah oleh Raspberry Pi, maka akan didapatkan titik koordinat (x,y) AGV sebagai keluaran. Sehingga dapat dilihat posisi terkini dari AGV. Kemudian, titik koordinat tersebut akan dikirim untuk memutar motor sesuai dengan perintah yang diinginkan.

3.7. Metode Penelitian _ 1 T A S

Metode yang dilakukan pada proyek *pattern recognition* untuk deteksi posisi pada AGV berbasis Raspberry Pi ini menggunakan Momen Invarian dan Momen Zernike. Dalam mengenal pola atau objek, momen invarian digunakan sebagai metode yang mengekstraksi sebuah pola atau objek. Menggunakan fungsi 2 dimensi diskrit yaitu f(x,y) dalam bentuk digital dari momen biasa yaitu (p+q). Penelitian ini mengadopsi momen invarian seperti pada persamaan (1) ;

$$m_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} f(x, y)$$
(1)

Dimana ($\overline{x} = \sum_{x} x$, $\overline{y} = \sum_{y} y$) melambangkan pusat massa dari objek. Asal gambar digital f(x,y) pertama kali diasumsikan dalam menerjemahkan ke pusat massa dari suatu objek untuk mencapai terjemahan invarian.

Serupa dengan momen biasa, momen zernike (m,n) digunakan untuk gambar digital yang ditentukan sebagai berikut seperti pada persamaan (2) ;

$$A_{nm} = \frac{n+1}{\pi} \sum_{x} \sum_{y} f(x, y) V_{nm}(x, y), x^2 + y^2 \le 1$$
(2)

Dimana $V_{nm}(x,y) = V_{nm}(\rho,\theta) = R_{nm}(\rho)e^{jm}$, $|m| \le n$, dan n - |m| merupakan bilangan genap. Lalu $R_{nm}(\rho)$ dapat didefinisikan seperti pada (3) ;

$$R_{nm}(\rho) = \sum_{s=0}^{\frac{n-|m|}{2}} (-1)^s \frac{(n-s)!}{s!\left(\frac{n+m}{2}-s\right)!\left(\frac{n-m}{2}-s\right)!} \rho^{n-2s}$$
(3)

Untuk fungsi bayangan nyata f(x, y), hanya suku $V_{nm}(\rho, \theta)$ yang merupakan bilangan kompleks seperti pada persamaan (4);

TAD

$$A_{nm} = \frac{n+1}{\pi} \sum_{x} \sum_{y} f(x,y) \left[VR_{nm}(x,y) + jVI_{nm}(x,y) \right] x^2 + y^2 \le 1$$
(4)

Dimana VR dan VI merupakan fungsi nyata yang mempresentasikan real dan bilangan imajiner dari fungsi dasar $V_{nm}(\rho, \theta)$, yang diubah menjadi bidang (x, y).

3.8. Rancangan Perangkat Keras

Pada penelitian ini, komponen-komponen yang dibutuhkan adalah Raspberry Pi *Camera* Versi 2 sebagai sensor penangkap pola, Raspberry Pi 4 Model B sebagai mikroprosesor, dan Raspberry Pi *Camera Interface* sebagai kabel konektor untuk menghubungkan Raspberry Pi 4 Model B dengan Raspberry Pi *Camera Modul* Versi 2.

Semua komponen tersebut dipasang pada *body* AGV yang telah didesain sedemikian rupa, seperti pada Gambar 3.11 dan Gambar 3.12.

Gambar 3.11 Desain Pemasangan Komponen Tampak Atas

Gambar 3.12 Desain Pemasangan Komponen Tampak Samping

Tahap pertama yang dilakukan saat merancang perangkat keras adalah posisi atau letak dari catu daya AGV, penelitian ini menggunakan *accu* 12 Volt dengan kapasitas 3,5 Ah (*Ampere Hour*). Dari *accu* lalu dihubungkan ke rangkaian pembagi dan *step-down chooper*. Kedua rangkaian tersebut digunakan untuk membagi tegangan dan menurunkan tegangan menuju 10 Volt dan arus menuju 3 Ampere yang akan menjadi *supply* daya pada Raspberry Pi. Setelah Raspberry Pi mendapat *supply* tegangan, maka Raspberry Pi dapat dioperasikan. Gambar 3.13, merupakan desain peletakan Raspberry Pi, rangkaian pembagi, dan *step-down chooper*.

Gambar 3.13 Desain Peletakan Raspberry Pi, Rangkaian Pembagi, dan Step-Down Chooper

Kemudian pasang Raspberry Pi *Camera Interface* sebagai kabel konektor, dari Kamera Raspberry Pi menuju port 2-*lane* MIPI CSI *camera port* yang ada pada Raspberry Pi. Gambar 3.14 menunjukan desain pemasangan Kamera Raspberry Pi dengan Raspberry Pi.

Gambar 3.14 Desain Pemasangan Raspberry Pi Camera dengan Raspberry Pi Tampak Atas

Pemasangan Raspberry Pi *Camera* menghadap ke atas bertujuan untuk mengangkap pola atau karakter yang ditempelkan atau dibuat pada langit-langit ruangan. Seperti pada Gambar 3.15.

Gambar 3.15 Desain Pemasangan Raspberry Pi Camera

Hal tersebut dilakukan karena untuk meminimalisir gangguan atau halangan yang akan terjadi jika mengadap ke depan maupun kebawah, seperti penglihatan terhalang oleh meja maupun pola yang terkikis oleh pergerakan dari AGV itu sendiri. Yang mengakibatkan kamera sebagai sensor tidak menangkap pola dengan baik. Pada Gambar 3.16, merupakan desain pemasangan Kamera Raspberry Pi dengan menggunakan akrilik sebagai penyangga.

Gambar 3.16 Desain Pemasangan Penyangga Raspberry Pi *Camera* Tampak Samping