LAMPIRAN

Lampiran 1. Kuisiner Untuk Uji Organoleptik Tempe Gembus

Nama :
Tanggal:
Produk : Tempe Gembus
Atribut : Rasa

Instruksi
Di hadapan Anda terdapat 3 sampel tempe gembus (mentah dan goreng). Cicipi sampel secara berurutan dari kiri ke kanan. Anda diminta untuk menilai setiap sampel dari angka 1 sampai dengan 5, dengan keterangan:
5 = sangat dapat diterima
4 = dapat diterima
3 = cukup dapat diterima
2 = kurang dapat diterima
1 = tidak dapat diterima

<table>
<thead>
<tr>
<th>Kode Sampel</th>
<th>Rating (boleh sama)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terima kasih
Lampiran 2. Tabel Hasil Analisa Uji Sensoris Tempe Gembus Dengan Kapang *Rhizopus oligosporus*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sampel</th>
<th>Skor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Warna</td>
<td>10:90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Warna</td>
<td>30:70</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Warna</td>
<td>50:50</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Tekstur</td>
<td>10:90</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tekstur</td>
<td>30:70</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Tekstur</td>
<td>50:50</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Aroma</td>
<td>10:90</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Aroma</td>
<td>30:70</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Aroma</td>
<td>50:50</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Rasa</td>
<td>10:90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rasa</td>
<td>30:70</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Rasa</td>
<td>50:50</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Overall</td>
<td>10:90</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Overall</td>
<td>30:70</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Overall</td>
<td>50:50</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

Keterangan :
5 = Sangat dapat diterima
4 = Dapat diterima
3 = Cukup dapat diterima
2 = Tidak dapat diterima
1 = Sangat tidak dapat diterima

Sampel :
10:90 = 10% kacang hijau : 90% kacang kedelai
30:70 = 30% kacang hijau : 70% kacang kedelai
50:50 = 50% kacang hijau : 50% kacang kedelai
Lampiran 3. Tabel Hasil Analisa Uji Sensoris Tempe Gembus Dengan Kapang *Rhizopus oryzae*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sampel</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warna</td>
<td>10:90</td>
<td>0</td>
<td>8</td>
<td>26</td>
<td>27</td>
<td>9</td>
<td>3,53</td>
</tr>
<tr>
<td>Warna</td>
<td>30:70</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>22</td>
<td>19</td>
<td>3,64</td>
</tr>
<tr>
<td>Warna</td>
<td>50:50</td>
<td>0</td>
<td>14</td>
<td>27</td>
<td>19</td>
<td>10</td>
<td>3,36</td>
</tr>
<tr>
<td>Tekstur</td>
<td>10:90</td>
<td>0</td>
<td>4</td>
<td>24</td>
<td>24</td>
<td>18</td>
<td>3,80</td>
</tr>
<tr>
<td>Tekstur</td>
<td>30:70</td>
<td>0</td>
<td>6</td>
<td>28</td>
<td>29</td>
<td>7</td>
<td>3,53</td>
</tr>
<tr>
<td>Tekstur</td>
<td>50:50</td>
<td>1</td>
<td>9</td>
<td>27</td>
<td>19</td>
<td>14</td>
<td>3,51</td>
</tr>
<tr>
<td>Aroma</td>
<td>10:90</td>
<td>1</td>
<td>11</td>
<td>23</td>
<td>26</td>
<td>9</td>
<td>3,44</td>
</tr>
<tr>
<td>Aroma</td>
<td>30:70</td>
<td>3</td>
<td>14</td>
<td>20</td>
<td>24</td>
<td>9</td>
<td>3,31</td>
</tr>
<tr>
<td>Aroma</td>
<td>50:50</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>22</td>
<td>24</td>
<td>3,80</td>
</tr>
<tr>
<td>Rasa</td>
<td>10:90</td>
<td>1</td>
<td>7</td>
<td>29</td>
<td>18</td>
<td>15</td>
<td>3,56</td>
</tr>
<tr>
<td>Rasa</td>
<td>30:70</td>
<td>1</td>
<td>7</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>3,67</td>
</tr>
<tr>
<td>Rasa</td>
<td>50:50</td>
<td>1</td>
<td>20</td>
<td>9</td>
<td>21</td>
<td>19</td>
<td>3,53</td>
</tr>
<tr>
<td>Overall</td>
<td>10:90</td>
<td>0</td>
<td>4</td>
<td>22</td>
<td>27</td>
<td>17</td>
<td>3,81</td>
</tr>
<tr>
<td>Overall</td>
<td>30:70</td>
<td>0</td>
<td>7</td>
<td>21</td>
<td>23</td>
<td>19</td>
<td>3,77</td>
</tr>
<tr>
<td>Overall</td>
<td>50:50</td>
<td>0</td>
<td>12</td>
<td>23</td>
<td>20</td>
<td>15</td>
<td>3,54</td>
</tr>
</tbody>
</table>

Keterangan:
5 = Sangat dapat diterima
4 = Dapat diterima
3 = Cukup dapat diterima
2 = Tidak dapat diterima
1 = Sangat tidak dapat diterima

Sampel:
10:90 = 10% kacang hijau : 90% kacang kedelai
30:70 = 30% kacang hijau : 70% kacang kedelai
50:50 = 50% kacang hijau : 50% kacang kedelai
Lampiran 4. Analisa SPSS Tekstur (kekerasan)

Lampiran 4.1. Tabel Deskriptif Tekstur (kekerasan)

<table>
<thead>
<tr>
<th>R OL</th>
<th>100%KK</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>1003.8817</td>
<td>70.08819</td>
<td>28.61338</td>
<td>930.3296</td>
<td>1077.4347</td>
<td>903.95</td>
<td>1092.00</td>
</tr>
<tr>
<td>10%</td>
<td>6</td>
<td>1284.7000</td>
<td>118.35033</td>
<td>48.31632</td>
<td>1160.4989</td>
<td>1408.9011</td>
<td>1158.80</td>
<td>1427.00</td>
</tr>
<tr>
<td>30%</td>
<td>6</td>
<td>1576.3333</td>
<td>96.84583</td>
<td>39.53714</td>
<td>1474.6999</td>
<td>1677.9668</td>
<td>1468.50</td>
<td>1691.50</td>
</tr>
<tr>
<td>50%</td>
<td>6</td>
<td>1955.3833</td>
<td>61.45380</td>
<td>25.08841</td>
<td>1890.8915</td>
<td>2019.8751</td>
<td>1870.80</td>
<td>2032.60</td>
</tr>
</tbody>
</table>

| 24 | 1455.0746 | 23.78007 | 9.70817 | 925.0077 | 974.9190 | 930.04 | 994.01 |

<table>
<thead>
<tr>
<th>R O</th>
<th>100%KK</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>1003.8817</td>
<td>70.08819</td>
<td>28.61338</td>
<td>930.3296</td>
<td>1077.4347</td>
<td>903.95</td>
<td>1092.00</td>
</tr>
<tr>
<td>10%</td>
<td>6</td>
<td>1284.7000</td>
<td>118.35033</td>
<td>48.31632</td>
<td>1160.4989</td>
<td>1408.9011</td>
<td>1158.80</td>
<td>1427.00</td>
</tr>
<tr>
<td>30%</td>
<td>6</td>
<td>1576.3333</td>
<td>96.84583</td>
<td>39.53714</td>
<td>1474.6999</td>
<td>1677.9668</td>
<td>1468.50</td>
<td>1691.50</td>
</tr>
<tr>
<td>50%</td>
<td>6</td>
<td>1955.3833</td>
<td>61.45380</td>
<td>25.08841</td>
<td>1890.8915</td>
<td>2019.8751</td>
<td>1870.80</td>
<td>2032.60</td>
</tr>
</tbody>
</table>

| 24 | 1455.0746 | 23.78007 | 9.70817 | 925.0077 | 974.9190 | 930.04 | 994.01 |

Lampiran 4.2. Tabel Test of Normality Tekstur (kekerasan)

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistics</td>
<td>df</td>
</tr>
<tr>
<td>R OL</td>
<td>100%KK</td>
<td>.186</td>
</tr>
<tr>
<td>10%</td>
<td>10%KH:90%KK</td>
<td>.217</td>
</tr>
<tr>
<td>30%</td>
<td>30%KH:70%KK</td>
<td>.272</td>
</tr>
<tr>
<td>50%</td>
<td>50%KH:50%KK</td>
<td>.203</td>
</tr>
</tbody>
</table>

R O	100%KK	.275	6	.176	.831	6	.110
10%	10%KH:90%KK	.267	6	.200*	.811	6	.073
30%	30%KH:70%KK	.179	6	.200*	.931	6	.585
50%	50%KH:50%KK	.250	6	.200*	.807	6	.356

*a. This is a lower bound of the true significance.
*Lilliefors Significance Correction

Lampiran 4.3. Tabel Post Hoc Tekstur (kekerasan)

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R OL</td>
<td>100%KK</td>
<td>6</td>
<td>1003.8817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>10%KH:90%KK</td>
<td>6</td>
<td>1284.7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>30%KH:70%KK</td>
<td>6</td>
<td>1576.3333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>50%KH:50%KK</td>
<td>6</td>
<td>1955.3833</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sig. | 1.000 | 1.000 | 1.000 | 1.000 |

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R O</td>
<td>100%KK</td>
<td>6</td>
<td>949.9633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>10%KH:90%KK</td>
<td>6</td>
<td>956.2583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>30%KH:70%KK</td>
<td>6</td>
<td>1247.2333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>50%KH:50%KK</td>
<td>6</td>
<td>1871.1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sig. | 1.000 | 1.000 | 1.000 | 1.000 |

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.
Lampiran 5. Hasil Analisa SPSS Uji Kimia (Rhizopus oligosporus)

5.1. Tabel Deskriptif Uji Kimia (Rhizopus oligosporus)

<table>
<thead>
<tr>
<th>Descriptives</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_AIR</td>
<td>6</td>
<td>83.5713</td>
<td>.2618</td>
<td>.0969</td>
<td></td>
<td>83.2965</td>
<td>83.8461</td>
<td>83.21</td>
<td>83.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83.8370</td>
<td>.17415</td>
<td>.07110</td>
<td></td>
<td>83.6542</td>
<td>84.0198</td>
<td>83.53</td>
<td>83.99</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>84.3957</td>
<td>.26600</td>
<td>.10960</td>
<td></td>
<td>84.1165</td>
<td>84.9748</td>
<td>83.89</td>
<td>84.60</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>84.8317</td>
<td>.41129</td>
<td>.16791</td>
<td></td>
<td>84.5000</td>
<td>85.3633</td>
<td>84.81</td>
<td>85.51</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>84.1839</td>
<td>.60042</td>
<td>.12256</td>
<td></td>
<td>83.9304</td>
<td>84.4735</td>
<td>83.21</td>
<td>85.51</td>
</tr>
<tr>
<td>K_ABU</td>
<td>6</td>
<td>8.4264</td>
<td>.10122</td>
<td>.04132</td>
<td></td>
<td>8.3202</td>
<td>8.5326</td>
<td>8.25</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.0854</td>
<td>.06880</td>
<td>.03625</td>
<td></td>
<td>7.9622</td>
<td>8.1486</td>
<td>7.94</td>
<td>8.14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.5034</td>
<td>.10455</td>
<td>.04268</td>
<td></td>
<td>7.3897</td>
<td>7.6131</td>
<td>7.38</td>
<td>7.62</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.0229</td>
<td>.41636</td>
<td>.16988</td>
<td></td>
<td>6.5859</td>
<td>7.4598</td>
<td>6.50</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.7520</td>
<td>.58437</td>
<td>.19126</td>
<td></td>
<td>7.5053</td>
<td>7.9898</td>
<td>6.50</td>
<td>8.54</td>
</tr>
<tr>
<td>PROTEIN</td>
<td>6</td>
<td>148.8737</td>
<td>7.80452</td>
<td>3.1861</td>
<td></td>
<td>140.6834</td>
<td>157.0040</td>
<td>133.56</td>
<td>155.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>139.4438</td>
<td>8.26514</td>
<td>3.37055</td>
<td></td>
<td>130.7795</td>
<td>148.1061</td>
<td>128.70</td>
<td>149.51</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>138.4899</td>
<td>8.11512</td>
<td>3.31298</td>
<td></td>
<td>129.9736</td>
<td>147.0062</td>
<td>126.60</td>
<td>147.71</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>135.8717</td>
<td>7.89354</td>
<td>3.22253</td>
<td></td>
<td>127.5879</td>
<td>144.1554</td>
<td>127.37</td>
<td>148.40</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>140.6698</td>
<td>9.00046</td>
<td>1.83844</td>
<td></td>
<td>136.8667</td>
<td>144.4729</td>
<td>126.60</td>
<td>155.10</td>
</tr>
<tr>
<td>CA</td>
<td>6</td>
<td>104.1577</td>
<td>5.20680</td>
<td>2.12567</td>
<td></td>
<td>98.6935</td>
<td>109.6219</td>
<td>95.66</td>
<td>108.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.4965</td>
<td>3.49233</td>
<td>1.42594</td>
<td></td>
<td>88.8010</td>
<td>96.1320</td>
<td>89.29</td>
<td>95.86</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>79.7125</td>
<td>3.49233</td>
<td>1.42594</td>
<td></td>
<td>76.0470</td>
<td>83.3780</td>
<td>76.52</td>
<td>82.90</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>61.6443</td>
<td>5.20680</td>
<td>2.12567</td>
<td></td>
<td>56.1801</td>
<td>67.1085</td>
<td>57.39</td>
<td>70.15</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>84.4963</td>
<td>16.63450</td>
<td>3.39550</td>
<td></td>
<td>77.4711</td>
<td>91.5194</td>
<td>57.39</td>
<td>108.41</td>
</tr>
</tbody>
</table>

Lampiran 5.2. Tabel Test of Normality Uji Kimia (Rhizopus oligosporus)

<table>
<thead>
<tr>
<th>Tests of Normality</th>
<th>Kolmogorov-Smirnov</th>
<th>Shaprio-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>K_AIR</td>
<td>.255</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.238</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.265</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.283</td>
<td>6</td>
</tr>
<tr>
<td>K_ABU</td>
<td>.290</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.186</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.273</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.184</td>
<td>6</td>
</tr>
<tr>
<td>PROTEIN</td>
<td>.178</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.258</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.232</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.228</td>
<td>6</td>
</tr>
<tr>
<td>CA</td>
<td>.315</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.184</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.146</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.156</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>.293</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.319</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.319</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>.293</td>
<td>6</td>
</tr>
</tbody>
</table>

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction
Lampiran 5.3. Tabel Post Hoc Uji Kimia *(Rhizopus oligosporus)*

K_AIR

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>SUBSET FOR ALPHA = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
</tr>
<tr>
<td>10%KH : 90%KK</td>
<td>6</td>
</tr>
<tr>
<td>30%KH : 70%KK</td>
<td>6</td>
</tr>
<tr>
<td>50%KH : 50KK</td>
<td>6</td>
</tr>
<tr>
<td>Sig</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

* Uses Harmonic Mean Sample Size = 6.000.

K_ABU

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>SUBSET FOR ALPHA = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>50%KH : 50KK</td>
<td>6</td>
</tr>
<tr>
<td>30%KH : 70%KK</td>
<td>6</td>
</tr>
<tr>
<td>10%KH : 90%KK</td>
<td>6</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
</tr>
<tr>
<td>Sig</td>
<td>.340</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

* Uses Harmonic Mean Sample Size = 6.000.

PROTEIN

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>SUBSET FOR ALPHA = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>50%KH : 50KK</td>
<td>6</td>
</tr>
<tr>
<td>30%KH : 70%KK</td>
<td>6</td>
</tr>
<tr>
<td>10%KH : 90%KK</td>
<td>6</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
</tr>
<tr>
<td>Sig</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

* Uses Harmonic Mean Sample Size = 6.000.

CA

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>SUBSET FOR ALPHA = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>50%KH : 50KK</td>
<td>6</td>
</tr>
<tr>
<td>30%KH : 70%KK</td>
<td>6</td>
</tr>
<tr>
<td>10%KH : 90%KK</td>
<td>6</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
</tr>
<tr>
<td>Sig</td>
<td>.476</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

* Uses Harmonic Mean Sample Size = 6.000.

P

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>SUBSET FOR ALPHA = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>50%KH : 50KK</td>
<td>6</td>
</tr>
<tr>
<td>30%KH : 70%KK</td>
<td>6</td>
</tr>
<tr>
<td>10%KH : 90%KK</td>
<td>6</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
</tr>
<tr>
<td>Sig</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

* Uses Harmonic Mean Sample Size = 6.000.
Lampiran 6. Hasil Analisa SPSS Uji Kimia (Rhizopus oryzae)
Lampiran 6.1. Tabel Deskriptif Uji Kimia (Rhizopus oryzae)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K_AIR

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K_ABU

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROTEIN

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CA

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>Shapiro-Wilk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction
Lampiran 6.3. Tabel Post Hoc Uji Kimia (Rhizopus oryzae)

K_AIR

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% KK</td>
<td>6</td>
<td>83.6027</td>
</tr>
<tr>
<td>10% KH : 90% KK</td>
<td>6</td>
<td>83.8503</td>
</tr>
<tr>
<td>30% KH : 70% KK</td>
<td>6</td>
<td>84.5783</td>
</tr>
<tr>
<td>50% KH : 50% KK</td>
<td>6</td>
<td>85.3000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

K_ABU

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% KK</td>
<td>6</td>
<td>0.0352</td>
</tr>
<tr>
<td>30% KH : 70% KK</td>
<td>6</td>
<td>0.0408</td>
</tr>
<tr>
<td>10% KH : 90% KK</td>
<td>6</td>
<td>0.0435</td>
</tr>
<tr>
<td>50% KH : 50% KK</td>
<td>6</td>
<td>0.0447</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

PROTEIN

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% KH : 50% KK</td>
<td>6</td>
<td>5.5774</td>
</tr>
<tr>
<td>30% KH : 70% KK</td>
<td>6</td>
<td>6.1024</td>
</tr>
<tr>
<td>10% KH : 90% KK</td>
<td>6</td>
<td>7.6921</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
<td>8.0393</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

CA

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% KH : 50% KK</td>
<td>6</td>
<td>146.3045</td>
</tr>
<tr>
<td>30% KH : 70% KK</td>
<td>6</td>
<td>159.6688</td>
</tr>
<tr>
<td>10% KH : 90% KK</td>
<td>6</td>
<td>156.1367</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
<td>170.4546</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

P

<table>
<thead>
<tr>
<th>PERLAK</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% KH : 50% KK</td>
<td>6</td>
<td>60.5815</td>
</tr>
<tr>
<td>30% KH : 70% KK</td>
<td>6</td>
<td>75.4612</td>
</tr>
<tr>
<td>10% KH : 90% KK</td>
<td>6</td>
<td>88.2152</td>
</tr>
<tr>
<td>100% KK</td>
<td>6</td>
<td>103.0948</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.
Lampiran 7. Hasil Analisa SPSS Uji Sensoris (Rhizopus oligosporus)
Lampiran 7.1. Tabel Deskriptif Uji Sensoris (Rhizopus oligosporus)

<table>
<thead>
<tr>
<th>WARNA</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARN 10%KH:90%KK</td>
<td>70</td>
<td>4.2000</td>
<td>.75373</td>
<td>.09009</td>
<td>4.0203</td>
<td>4.3797</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>3.7143</td>
<td>.85369</td>
<td>.10203</td>
<td>3.5107</td>
<td>3.9178</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>3.2857</td>
<td>.72516</td>
<td>.06668</td>
<td>3.1128</td>
<td>3.4598</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>3.7333</td>
<td>.86366</td>
<td>.09844</td>
<td>3.6162</td>
<td>3.8505</td>
<td>2.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Lampiran 7.2. Tabel Uji Mann-Whitney

Warna

<table>
<thead>
<tr>
<th>WARNA</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARN 10%KH:90%KK</td>
<td>70</td>
<td>31.10</td>
<td>5677.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>59.90</td>
<td>4193.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>90.70</td>
<td>9870.00</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>WARNA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARN</td>
<td>1708.000</td>
<td>4193.000</td>
<td>-3.290</td>
<td>.001</td>
</tr>
</tbody>
</table>

Warna

<table>
<thead>
<tr>
<th>WARN 10%KH:90%KK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARN 10%KH:90%KK</td>
<td>70</td>
<td>35.70</td>
<td>6349.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>50.30</td>
<td>3521.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>56.00</td>
<td>9870.00</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>WARNA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARN</td>
<td>1036.000</td>
<td>3521.000</td>
<td>-6.237</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE
<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARN 30%KH:70%KK</td>
<td>70</td>
<td>81.00</td>
<td>5670.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>60.00</td>
<td>4200.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>WARN</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1715.00</td>
<td>4200.00</td>
<td>-3.283</td>
<td>.001</td>
</tr>
</tbody>
</table>

a. Grouping Variable KODE
Aroma

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMA 10%KH:90%KK</td>
<td>70</td>
<td>75.37</td>
<td>5276.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>65.63</td>
<td>4594.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td>4594.00</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>AROMA 10%KH:90%KK</th>
<th>30%KH:70%KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2109.000</td>
<td>4594.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-1.511</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.131</td>
<td></td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMA 10%KH:90%KK</td>
<td>70</td>
<td>80.04</td>
<td>5602.50</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>60.96</td>
<td>4267.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td>4267.50</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>AROMA 10%KH:90%KK</th>
<th>50%KH:50%KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1782.500</td>
<td>4267.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-2.935</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
<td></td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMA 30%KH:70%KK</td>
<td>70</td>
<td>75.47</td>
<td>5283.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>65.53</td>
<td>4587.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td>4587.00</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>AROMA 30%KH:70%KK</th>
<th>50%KH:50%KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2102.000</td>
<td>4587.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-1.539</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.124</td>
<td></td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE
Rasa

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASA 10%KH:90%KK</td>
<td>70</td>
<td>78.70</td>
<td>5509.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>62.30</td>
<td>4361.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>RASA</th>
<th>Test Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1876.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4361.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.593</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.010</td>
</tr>
</tbody>
</table>

* a. Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASA 10%KH:90%KK</td>
<td>70</td>
<td>84.17</td>
<td>5892.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>56.83</td>
<td>3978.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>RASA</th>
<th>Test Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1493.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>3978.000</td>
</tr>
<tr>
<td>Z</td>
<td>-4.314</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

* a. Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASA 30%KH:70%KK</td>
<td>70</td>
<td>74.65</td>
<td>5225.50</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>66.35</td>
<td>4644.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>RASA</th>
<th>Test Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2159.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4644.500</td>
</tr>
<tr>
<td>Z</td>
<td>-1.279</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.201</td>
</tr>
</tbody>
</table>

* a. Grouping Variable: KODE
Overall

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL 10%KH:90%KK</td>
<td>70</td>
<td>77.33</td>
<td>5413.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>63.67</td>
<td>4457.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>OVERALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1972.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4457.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.195</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.028</td>
</tr>
</tbody>
</table>

a Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL 10%KH:90%KK</td>
<td>70</td>
<td>89.39</td>
<td>6257.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>51.61</td>
<td>3613.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>OVERALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1128.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>3613.00</td>
</tr>
<tr>
<td>Z</td>
<td>-5.910</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL 30%KH:70%KK</td>
<td>70</td>
<td>62.90</td>
<td>5803.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>58.10</td>
<td>4067.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>OVERALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1582.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4067.00</td>
</tr>
<tr>
<td>Z</td>
<td>-3.881</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Grouping Variable: KODE
Lampiran 8. Hasil Analisa SPSS Uji Sensoris (*Rhizopus oryzae*)

Lampiran 8.1. Tabel Deskriptif Uji Sensoris (*Rhizopus oryzae*)

<table>
<thead>
<tr>
<th>WARNA</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%KH:90%KK</td>
<td>70</td>
<td>3.5286</td>
<td>.80345</td>
<td>.10320</td>
<td>3.3227</td>
<td>3.7345</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>3.6429</td>
<td>1.12978</td>
<td>.13503</td>
<td>3.3735</td>
<td>3.9122</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>3.3571</td>
<td>.96362</td>
<td>.11518</td>
<td>3.1274</td>
<td>3.5869</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>3.5965</td>
<td>.95986</td>
<td>.08859</td>
<td>3.3743</td>
<td>3.6447</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEKSTUR</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%KH:90%KK</td>
<td>70</td>
<td>3.8000</td>
<td>1.89443</td>
<td>.10690</td>
<td>3.5867</td>
<td>4.0133</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>3.5286</td>
<td>.79348</td>
<td>.09484</td>
<td>3.3394</td>
<td>3.7178</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>3.5143</td>
<td>1.00351</td>
<td>.11994</td>
<td>3.2750</td>
<td>3.7536</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>3.6143</td>
<td>.90653</td>
<td>.06256</td>
<td>3.4910</td>
<td>3.7376</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AROMA</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%KH:90%KK</td>
<td>70</td>
<td>3.4429</td>
<td>.95759</td>
<td>.11445</td>
<td>3.2145</td>
<td>3.6712</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>3.3143</td>
<td>1.07059</td>
<td>.12796</td>
<td>3.0590</td>
<td>3.5696</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>3.8000</td>
<td>1.14967</td>
<td>.13741</td>
<td>3.5269</td>
<td>4.0741</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>3.6143</td>
<td>.90653</td>
<td>.06256</td>
<td>3.4910</td>
<td>3.7376</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RASA</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%KH:90%KK</td>
<td>70</td>
<td>3.5571</td>
<td>.98739</td>
<td>.11802</td>
<td>3.3217</td>
<td>3.7926</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>3.6714</td>
<td>1.01755</td>
<td>.12162</td>
<td>3.4288</td>
<td>3.9141</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>3.5268</td>
<td>1.21261</td>
<td>.14492</td>
<td>3.2395</td>
<td>3.8177</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>3.5857</td>
<td>1.07373</td>
<td>.07409</td>
<td>3.3799</td>
<td>3.7316</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OVERALL</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%KH:90%KK</td>
<td>70</td>
<td>3.8143</td>
<td>.87299</td>
<td>.10434</td>
<td>3.6081</td>
<td>4.0224</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>3.7714</td>
<td>.96566</td>
<td>.11542</td>
<td>3.5412</td>
<td>4.0017</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>3.5429</td>
<td>1.01704</td>
<td>.12156</td>
<td>3.3004</td>
<td>3.7854</td>
<td>2.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>3.7095</td>
<td>.96667</td>
<td>.06602</td>
<td>3.5794</td>
<td>3.8397</td>
<td>2.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Lampiran 8.2. Tabel Uji Mann-Whitney

Warna

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNA</td>
<td>70</td>
<td>67.36</td>
<td>4715.50</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>73.64</td>
<td>5154.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics a

<table>
<thead>
<tr>
<th>WARNA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2230.500</td>
<td>4715.500</td>
<td>-.954</td>
<td>.340</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNA</td>
<td>70</td>
<td>74.35</td>
<td>5204.50</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>66.65</td>
<td>4665.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics a

<table>
<thead>
<tr>
<th>WARNA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2180.500</td>
<td>4665.500</td>
<td>-1.181</td>
<td>.237</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE
 Tekstur

WARNAN

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNA 30%KH:70%KK</td>
<td>70</td>
<td>76.40</td>
<td>5348.00</td>
</tr>
<tr>
<td>WARNA 50%KH:50%KK</td>
<td>70</td>
<td>64.60</td>
<td>4522.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2037.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4522.000</td>
</tr>
<tr>
<td>Z</td>
<td>-1.783</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.075</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

TEKSTUR

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKSTUR 10%KH:90%KK</td>
<td>70</td>
<td>76.26</td>
<td>5338.00</td>
</tr>
<tr>
<td>TEKSTUR 30%KH:70%KK</td>
<td>70</td>
<td>64.74</td>
<td>4532.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2047.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4532.000</td>
</tr>
<tr>
<td>Z</td>
<td>-1.782</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.075</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

TEKSTUR

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKSTUR 10%KH:90%KK</td>
<td>70</td>
<td>76.01</td>
<td>5321.00</td>
</tr>
<tr>
<td>TEKSTUR 50%KH:50%KK</td>
<td>70</td>
<td>64.99</td>
<td>4549.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2064.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4549.000</td>
</tr>
<tr>
<td>Z</td>
<td>-1.686</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.092</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

TEKSTUR

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKSTUR 30%KH:70%KK</td>
<td>70</td>
<td>70.94</td>
<td>4965.50</td>
</tr>
<tr>
<td>TEKSTUR 50%KH:50%KK</td>
<td>70</td>
<td>70.06</td>
<td>4904.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2419.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4904.500</td>
</tr>
<tr>
<td>Z</td>
<td>-1.134</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.893</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE
Aroma

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMA 10%KH:90%KK</td>
<td>70</td>
<td>72.59</td>
<td>5681.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>68.41</td>
<td>4789.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>AROMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2304.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4789.00</td>
</tr>
<tr>
<td>Z</td>
<td>-0.635</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.528</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMA 10%KH:90%KK</td>
<td>70</td>
<td>62.99</td>
<td>4409.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>78.01</td>
<td>5461.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>AROMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1924.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4409.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.276</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.023</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

Ranks

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMA 30%KH:70%KK</td>
<td>70</td>
<td>61.54</td>
<td>4308.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>79.46</td>
<td>5562.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>AROMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>1823.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4308.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.703</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE
Rasa

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASA 10%KH:90%KK</td>
<td>70</td>
<td>68.11</td>
<td>4768.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>72.89</td>
<td>5102.00</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>RASA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2283.080</td>
<td>4768.000</td>
<td>-.729</td>
<td>.466</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASA 10%KH:90%KK</td>
<td>70</td>
<td>70.55</td>
<td>4938.50</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>70.45</td>
<td>4931.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>RASA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2446.500</td>
<td>4931.500</td>
<td>-.015</td>
<td>.988</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

<table>
<thead>
<tr>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASA 30%KH:70%KK</td>
<td>70</td>
<td>72.48</td>
<td>5073.50</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>68.52</td>
<td>4796.50</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>RASA</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2311.500</td>
<td>4796.500</td>
<td>-.597</td>
<td>.551</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE
Overall

<table>
<thead>
<tr>
<th>Ranks</th>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL</td>
<td>10%KH:90%KK</td>
<td>70</td>
<td>71.13</td>
<td>4979.00</td>
</tr>
<tr>
<td>30%KH:70%KK</td>
<td>70</td>
<td>69.87</td>
<td>4891.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics a

<table>
<thead>
<tr>
<th>MAN-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney U</td>
<td>2406.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4891.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-.192</td>
<td></td>
<td>.847</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

<table>
<thead>
<tr>
<th>Ranks</th>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL</td>
<td>10%KH:50%KK</td>
<td>70</td>
<td>75.76</td>
<td>5303.50</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>65.24</td>
<td>4566.50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics a

<table>
<thead>
<tr>
<th>MAN-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney U</td>
<td>2081.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4566.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-.1605</td>
<td></td>
<td>.108</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE

<table>
<thead>
<tr>
<th>Ranks</th>
<th>KODE</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL</td>
<td>20%KH:70%KK</td>
<td>70</td>
<td>74.90</td>
<td>5243.00</td>
</tr>
<tr>
<td>50%KH:50%KK</td>
<td>70</td>
<td>66.10</td>
<td>4627.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics a

<table>
<thead>
<tr>
<th>MAN-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann-Whitney U</td>
<td>2142.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>4627.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-.1336</td>
<td></td>
<td>.182</td>
</tr>
</tbody>
</table>

a. Grouping Variable: KODE