
19

CHAPTER 5

IMPLEMENTATION AND TESTING

Implementation

All of the modules used in this research are created by using Python

programming language, with the help of matplotlib.Image and numpy

library in order to open and view the values of each cells in the image.

Some other libraries are also used, and some of the modules used are

created based on the journals as reference.

As for the neural network, some additional conditions are created in

the neural network and input module order to make them able to save the

outputs of its predictions into text file for each image directory.

Fuzzy Edge Extraction

In order to be able to recognize every ojects in a number plate, the first

thing to do is to obtain the features of each object in the plate. Since the

majority of colors found in chassis plates are mostly white, gray, and

black, the values of hue and saturation in the image are close to 0, which

means the fuzzy hue and saturation map of the image is more likely to

appear blank. It may reduce the quality of the extracted plate features. To

the point that some objects can be missing after extracting the decision

map, and later it will affect the performance of the neural network.

The fuzzy edge image can be used as a better option in extracting the

chassis plate features since it can contain most of the edge features in the

image with a fairly good quality. Thus, the other fuzzy map extraction and

integration processes are skipped. The codes for the fuzzy edge extraction

module can be seen in images below. And the fuzzy edge extraction can

be seen starting from line 39.

20

Illustration 5.1. 1 fuzzyedge code1

21

As seen on the images 5.1.1 and 5.1.2 above, the gray value of the

image is obtained by picking the maximum value of the pixel between the

red, green, and blue values (line 26). And the maximum and minimum value

are obtained by first converting the image into a 1 dimensional array then pick

the max and min value by using numpy. (line 40).

Illustration 5.1. 1: fuzzyedge code1

Illustration 5.1. 2: fuzzyedge code2

22

 The steps of obtaining the memberships of the image can be seen

starting from line 43 to line 50. And the normalization starting from line 51.

After the fuzzy edge image is obtained, the next step is to erase any

pixels in the image with the value less than 255, since these pixels will be

considered as noise that can increase data complexity and reduce the

performance of the neural network.

The image above shows the fuzzy edge image before the thresholding(top)

and after thresholding (bottom)

Illustration 5.1. 3: thresholding

Illustration 5.1. 4: threshold code

23

As seen in the code above, starting from line 8, the module will loop

through every images in the directory, and apply thresholding on them. And

after the process is finished, the resulting binary image will be saved in a new

directory, as seen on line 18.

Neural Network

The image above is the illustration of the neural network and it shows three

(3) kinds of nodes that makes up its structure. Which consists of:

- 3 input nodes (pink)

- 1 hidden layer that consists of 4 hidden nodes (yellow)

- 1 output node (blue)

Illustration 5.1. 5: NN illustration

24

The processes of the neural network consists of:

1. Initializing the neural network

This step is only done once when the neural network is initialized.

The neural network will initialize random weights for each nodes.

2. Feed forward

Used to train the neural network and predict the dataset. The data

will be forwarded into the next node after the weight is applied.

Sigmoid function is then applied to obtain the output of that node.

Illustration 5.1. 6: feedforward

25

3. Back propagation

Back propagation is the vital part in training the neural network. Since it plays

a role in changing the weights based on error in the prediction results. This

process starts by calculating the output error by comparing the output with

the dataset’s label. Sigmoid derivative will then be applied to the error values

by using sigmoid prime function. And then added to the weight.

In this research, the neural network will be set to having 594 input nodes,

which is the same amount as the pixels in the image, 30 hidden nodes, 26

output nodes (for letter or alphabetical input), and 10 output nodes for

numeric input. The neural network will be trained for 400 times before

beginning to predicting the outputs. And each groups of the inputs (letter and

number) will be predicted by using two separate neural networks. The neural

network will print the accuracy of each epochs after each training is done.

Illustration 5.1. 7: backpropagation

Illustration 5.1. 8: epoch

26

Testing

From the total of 92 plate images, 55 fuzzy edge maps are successfully

extracted. The images then divided into 2 groups, consisting of 14 images as

the testing sample, and the rest becoming the training samples.

The training and testing samples then being segmented and fed into the

neural network. With the testing samples containing 49 alphabet images and

94 numeric images, the neural network was able to predict the numeric images

with a maximum accuracy of 51%, and 44.8% maximum for the alphabet

inputs. With that accuracy, still, many of the plates can be read just partially

by the neural network. With only few of the objects in the plate being

predicted accurately.

Table 5.2. 1 result_table

No. Plate number Predicted Accuracy

1 35500038a 10505058g 4/10

2 rhs28054 bmb24554 3/8

3 1407 1407 4/4

4 lfobclt13160004833 bdbbclb0000453081 4/18

5 ghd5uc274747 ghd0bb747574 3/12

6 an5l6685 nc5l8881 3/8

7 an5l24133 ma0a24120 3/9

8 1003021463 5000502145 2/10

9 gt400espada bn400dgbljd 3/11

10 6857om 4853gm 3/6

11 jhmgd37700s200000 gdmbb00720t700505 5/17

12 1hgcm56683a086782 1hghm20505g005702 7/17

13 vf23vrhyf42356165 df20bmhmb42055155 7/16

As seen in the table above, with only 51% and 44.8% of accuracy for

overall samples, the resulting predictions is still far from the expectations.

This proves that there should be some problems in the chassis plate that

should be considered which can contribute to the quality of the extracted

features.

27

While noises in an image can be solved with various approaches, other

problems in the chassis plates such as lack of uniformity needs more

consideration. Since it may give a greater impact to the accuracy.

Therefore, a new, different approach is needed in this application as

compared to the recognition systems commonly used in vehicle license

plate.

An additional step is also tested in order to obtain a better image

quality, such as applying an edge detection kernel to the fuzzy edge image

instead of applying thresholding. But instead of improving the quality of

the image, it causes the resulting feature image to drop in quality. Not only

that, the plates which the quality can be preserved drops from 55 to 28

plates, from all the 92 plate samples.

The image below shows the examples of the plates that dropped in

quality, the top picture shows the original image, the middle for the

binarization result of the fuzzy edge images, and the fuzzy edge with edge

detection kernel at the bottom.

Illustration 5.2. 1: reduced accuracy

