
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

This section will explain the utilization of the code that is used in this

study.

5.1.1 Image Input

The following is the code for inputting an image:

1. List<Asset> resultList = await MultiImagePicker.pickImages(
2. maxImages: 1,
3.);
4. ByteData byteData = await resultList[0].getByteData(
5. quality: 75
6.);
7. final buffer = byteData.buffer;
8. var list = buffer.asUint8List(byteData.offsetInBytes,

byteData.lengthInBytes);
9. base64Image = base64Encode(list);

Lines 1-3 are the commands used to take pictures from a smartphone.

Lines 4-6 are the commands used to extract assets from the selected image. Line 7

is to retrieve the object from the buffer byte. Line 8 is functioned to change the

byte buffer to Uint8List. On the line 9, the results of line 8 are then changed back

to base64.

5.1.2 ECB Encryption Mode

The results of the implementation of the ECB DES mode encryption

algorithm can be seen as below.

22

23

To encrypt, select the image first. To select an image, press the "Select

image" button, then the page will show the gallery found on an Android

smartphone. After selecting the image, the next step is to enter the key. The key

has a length of 8 digits. After selecting an image and entering the key, then press

the "ENCRYPT" button to execute the program.

These are the code for doing encryption:

1.var hasilSplit = _allFunction.splitTo64Bit(kata[h]);
2.var binaryKey = _allFunction.stringToBinary(key);
3.var resultPermutationKey =

_allFunction.permutationWithTablePC1(binaryKey);
4.for (var j = 0; j < shift.length; j++) {

Figure 5.1: ECB Mode Encryption
Display

24

5. var c = _allFunction.leftShifting(cidi[j].ci, shift[j]);
6. var d = _allFunction.leftShifting(cidi[j].di, shift[j]);
7. cidi.add(CiDi(c, d));
8.}
9.var k = _allFunction.permutationWithTablePC2(joinCiDi);
10.for (var i = 0; i < hasilSplit.length; i++) {
11. var binary = _allFunction.stringToBinary(hasilSplit[i]);
12. var resultPermutationPlainText =

_allFunction.permutationWithTableIP(binary);
13. var er0 = _allFunction.expansiWithTableExpansi(r0);
14. var a1 = _allFunction.xOr(er0, ki[0].k);
15. var b1 = _allFunction.subtitusiSBox(a1);
16. var pb1 = _allFunction.permutationWithTablePBox(b1);
17. var r1 = _allFunction.xOr(pb1, l0);
18. var er1 = _allFunction.expansiWithTableExpansi(r1);
19. var resultAll =

_allFunction.permutationWithTableIP1(joinR16L16);
20. var _resultSplit = _allFunction.splitTo4Bit(resultAll);
21. temp = _allFunction.binaryToHex(_resultSplit);
22.}

Line 1 contains the code to change the plaintext into 8 bytes or 64 bits

which will be saved in the hasilSpit variable in the form of an array. Lines 2 and 3

are functioned to change the string to binary from the key which is then mutated

with PC1 table. Lines 4-8 are 16 times key-shift command which will be stored in

the cidi array of objects. Line 9 is the result of cidi permutation with PC2 table.

After that, lines 10-22 are encryption for every 8 bytes. Line 11 is functioned to

change the plaintext into binary that will be mutated with the IP table in line 12

and be expanded with the Expansion table in line 13. Furthermore, there will be

16x interactions in line 14-18, then in line 19 the interaction results will be

mutated with IP1 table. Lastly, the binary is changed into hexadecimal in line 21.

5.1.3 ECB Decryption Mode

The results of the implementation of the DES ECB mode decryption

algorithm can be seen as below.

25

To decrypt, the results of the image encryption will be filled in the

ciphertext input selection section. After that, enter the same key when doing

encryption that has a length of 8 digits. Then, press the "DECRYPT" button and

the results of the decryption will be displayed at the bottom of the button.

Figure 5.2: ECB Mode Decryption
Display

26

These are the code for doing decryption:

1.var binaryKey = _function.stringToBinary(key);
2.var resultPermutationKey =

_function.permutationWithTablePC1(binaryKey);
3.for (var j = 0; j < shift.length; j++) {
4. var c = _function.leftShifting(cidi[j].ci, shift[j]);
5. var d = _function.leftShifting(cidi[j].di, shift[j]);
6. cidi.add(CiDi(c, d));
7.}
8.var k = _function.permutationWithTablePC2(joinCiDi);
9.var hasilSplit =

_allFunction.splitTo128Bit(splitCipherText[h]);
10. for (var i = 0; i < hasilSplit.length; i++) {
11. var binary = _allFunction.hexToBinary(hasilSplit[i]);
12. var resultPermutationPlainText =

_allFunction.permutationWithTableIP(binary);
13. var er0 = _allFunction.expansiWithTableExpansi(r0);
14. var a1 = _allFunction.xOr(er0, ki[15].k);
15. var b1 = _allFunction.subtitusiSBox(a1);
16. var pb1 = _allFunction.permutationWithTablePBox(b1);
17. var r1 = _allFunction.xOr(pb1, l0);
18. var er1 = _allFunction.expansiWithTableExpansi(r1);
19. var resultAll =

_allFunction.permutationWithTableIP1(joinR16L16);
20. temp = _allFunction.binaryToString(resultAll);
21. }

Lines 1 and 2 are functioned to change the string to binary from the key

which is then mutated with PC1 table. Lines 3-7 represent key shift orders at 16

times which will be stored in the cidi objects array. Row 8 is the result of cidi

permutation with PC2 table. At line 9, the ciphertext is converted into several

parts whose returns is array. After that, lines 10-21 are decrypted for each of the

16 digits. Line 11 is a program to change hexadecimal to binary, which will be

mutated with IP table in line 12. Furthermore, there are 16x interactions in lines

13-18 and are mutated with IP1 table in line 19. Lastly, the binary is changed back

to a plaintext in line 20.

27

5.1.4 CBC Encryption Mode

The results of implementing the CBC DES mode encryption algorithm can

be seen as below.

To encrypt, select the image first. To select an image press the "Select

image" button, then the page will open the gallery from Android smartphone.

After selecting the image, the next step is to enter the key which has a length of 8

digits. After selecting an image and entering the key, then press the "ENCRYPT"

button to execute the program.

Figure 5.3: CBC Mode
Encryption Display

28

These are the code for doing encryption:

1.import 'package:flutter_des/flutter_des.dart';
2.onPressed: () async {
3. print(DateTime.now());
4. var enkrip = await FlutterDes.encryptToHex(_imageLampiranWA,

_keyController.text, iv: "12345678");
5. print(DateTime.now());
6. print("PANJANG = ${enkrip.length}");
7.},

Line 1 is functioned to import the library that will be used in line 4. Lines

2 and 7 are the lines for special functions in it. Lines 3 and 5 are functioned to

display the time that will later be used for doing calculations. Line 4 is the

command for encryption of the base64 image with a predefined key. This library

will automatically adjust the length of the plaintext itself, so the length of the

plaintext doesn't need to be worried.

5.1.5 CBC Decryption Mode

The results of the implementation of DES mode CBC decryption algorithm

can be seen as below:

29

To decrypt, the results of the image encryption will be filled in the

ciphertext input selection section. After that, enter the same key as before when

doing encryption which has a length of 8 digits. Then, press the "DECRYPT"

button and finally the results of the decryption will be displayed at the bottom of

the button.

Figure 5.4: CBC Mode Decryption
Display

30

These are the code for doing decryption:

1.import 'package:flutter_des/flutter_des.dart';
2.onPressed: () async {
3. print(DateTime.now());
4. var dekrip = await

FlutterDes.decryptFromHex(_cipherTextController.text,
_keyController.text, iv: "12345678");

5. print(DateTime.now());
6. print("PANJANG = ${dekrip.length}");
7.},

Line 1 is functioned to import the library that will be used in line 4. Lines

2 and 7 are the lines for special functions within it. Lines 3 and 5 are functioned to

display the time that will be used for doing calculations later. Line 4 is the

command to decrypt the ciphertext with the same key used when encrypting. This

library will adjust the length of the ciphertext itself so the length of the plaintext

doesn't need to be worried.

5.2 Testing

5.2.1 Encryption

These ten pictures are going to be tested. These pictures are:

1. Mario.png (240x320)

Figure 5.5: Image Test 1

31

2. Rabbit.jpg (336x339)

3. Shoes.png (480x359)

Figure 5.6: Image Test 2

Figure 5.7: Image Test 3

32

4. Headset.jpg (385x385)

5. Tiger.jpg (387x791)

Figure 5.8: Image Test 4

Figure 5.9: Image Test 5

33

6. Vector.jpg (626x417)

7. Smartphone.jpg (350x230)

Figure 5.10: Image Test 6

Figure 5.11: Image Test 7

34

8. Smartphone.jpeg (600x400)

9. Flashdisk.jpg (380x380)

Figure 5.12: Image Test 8

Figure 5.13: Image Test 9

35

10. Bottle.jpg (348x363)

Here is the encryption time table in milliseconds:

Table 5.1: Table Encryption Time (in millisecond)

Plaintext
Length

ECB Mode CBC Mode

Time
Ciphertext

Length
Time

Ciphertext
Length

Mario.png 6180 460,344 12368 58,544 12368

Rabbit.jpg 12856 952,272 25712 10,904 25728

Shoes.png 31996 2380,040 64000 16,520 64000

Headset.jpg 22428 1841,737 44864 18,573 44864

Tiger.jpg 108212 8911,640 216432 52,259 216432

Vector.jpg 43464 3288,386 86928 21,970 86944

Smartphone.jpg 13616 1109,799 27232 10,842 27248

Smartphone.jpeg 35888 2761,246 71776 31,215 71792

Flashdisk.jpg 12076 904,024 24160 12,989 24160

Bottle.jpg 7128 591,607 14256 9,155 14272

The results of testing the image encryption process are in the table above.

The time required for encryption with the ECB DES Mode Algorithm is longer

than that of the CBC DES Mode Algorithm. This is because in ECB Mode the

Figure 5.14: Image Test 10

36

process of executing the code that is run sequentially based on the code written

and the received plaintext will be checked in length first. If the length of the

plaintext is 16 bytes, the plaintext will be divided into two part (8 bytes each)

which are then encrypted one by one.

While the CBC DES Mode Algorithm has a relatively shorter time because

the code execution process is asynchronous. The process of executing this code is

not in accordance with the existing order so that if the length of the plaintext is 16

bytes, the encryption process can run simultaneously and the results of the

encryption are combined again. The total time difference from the average

encryption results between ECB and CBC Modes is 2296,812 milliseconds.

5.2.2 Decryption

Here is the decryption time table in milliseconds:

Table 5.2: Table Decryption Time (in millisecond)

ECB Mode CBC Mode

Ciphertext
Length

Time
Plaintext
Length

Ciphertext
Length

Time
Plaintext
Length

Mario.png 12368 464,933 6180 12368 36,553 6180

Rabbit.jpg 25712 960,663 12856 25728 60,781 12856

Shoes.png 64000 2432,750 31996 64000 32,075 31996

Headset.jpg 44864 1762,887 22428 44864 19,966 22428

Tiger.jpg 216432 9500,259 108212 216432 55,396 108212

Vector.jpg 86928 3714,853 43464 86944 20,604 43464

Smartphone.jpg 27232 1021,303 13616 27248 10,761 13616

Smartphone.jpeg 71776 2839,548 35888 71792 22,972 35888

Flashdisk.jpg 24160 892,069 12076 24160 11,739 12076

Bottle.jpg 14256 486,244 7128 14272 41,987 7128

Table 5.2 is a result table for testing the decryption process. The time

required for decryption using the ECB DES mode algorithm is longer than that of

the CBC DES mode algorithm. This is the same as, during encryption, the code

37

execution process that is run on the ECB DES mode algorithm is sequentially

based on the code written. So if the length of the ciphertext is 32 digits, then the

ciphertext will be divided into two parts first (every 16 digits) which is then

decrypted one by one and then put together into a plaintext.

CBC DES mode algorithm has a relatively shorter time because the code

execution process is asynchronous. This makes the decryption process using the

CBC DES mode algorithm have a shorter time. The total time difference from the

average decryption result between ECB and CBC modes is 2376,268

milliseconds.

	Cover
	APPROVAL AND RATIFICATION PAGE
	STATEMENT OF ORIGINALITY
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1 Literature Study
	3.2 Collecting Data
	3.3 Analysis
	3.4 Implementation
	3.5 Testing

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.1.1 ECB Mode
	4.1.2 CBC Mode
	4.1.3 Encryption and Decryption Speed

	4.2 Desain
	4.2.1 Encryption
	4.2.2 Decryption

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.1.1 Image Input
	5.1.2 ECB Encryption Mode
	5.1.3 ECB Decryption Mode
	5.1.4 CBC Encryption Mode
	5.1.5 CBC Decryption Mode

	5.2 Testing
	5.2.1 Encryption
	5.2.2 Decryption

	CHAPTER 6 Conclusion
	References
	Appendix

