
CHAPTER 4

ANALYSIS AND DESIGN

4.1 Analysis

4.1.1 ECB Mode

Encrypting images using the ECB DES mode algorithm uses code created

by the author himself. The DES mode ECB algorithm uses plain text with a size

of 8 bytes or 64 bits. For plain text that has a size of more than 8 bytes, the

method used is to divide plain text into each 8-byte section so that the encryption

process is done per 8 bytes which then the results of the encryption are put back

together to produce one ciphertext.

Images decryption using the ECB DES mode algorithm also uses code

created by the author himself. The results of the encryption mode DES ECB

algorithm produces a ciphertext measuring 16 bytes which is then decrypted to

produce a plaintext with a size of 8 bytes. Just like the encryption process, if the

ciphertext has a size of more than 16 bytes, the ciphertext is divided into 16 bytes

then the results of the decryption are put back together.

4.1.2 CBC Mode

Encryption and decryption with CBC DES mode algorithm use a library

from https://pub.dev/packages/flutter_des. Plain text can be directly encrypted

without need to be separated into 8 bytes. For decryption process, enter the same

key as inputted in the encryption process, otherwise the decryption results will be

different from the initial plain text.

4.1.3 Encryption and Decryption Speed

Encryption and decryption speed measurements use millisecond units. The

time is calculated from the end time minus the start time.

10

11

4.2 Desain

4.2.1 Encryption

Plaintext data (messages) are encrypted into 64-bit blocks into 64-bit

ciphertext data using 56-bit internal keys where the 8-bit keys will be ignored.

From the way to process the plaintext, DES is categorized as a block cipher where

the block cipher works by processing data in a block where several characters are

combined into one block so that each process of one block produces one block of

output as well.

The key given by the user is converted to 64-bit binary and compressed to

56 bits using a PC-1 compression permutation matrix while the others 8-bit keys

are ignored. The Ignored bits are 8, 16, 24, 32, 40, 48, 56, 64.

After being compressed with PC-1 with 56 bits, the results are divided into

2 parts, with each part consisting of 28 bits and stored in C0 and D0. After dividing

into 2 parts, C0 and D0 are shifted to the left along 1 or 2 bits depending on each

spin. This rotation is wrapping or round-shift, so the bit that is located in the front

will move to the very back if it is moved. The rotation scheme can be seen below

Figure 4.1: PC-1 Table

12

From the results of this shift, C1 and D1 are obtained. Likewise, so on to

produce C16 and D16. After that, to get the first internal key or K1, the bits of C1

and D1 need to be compressed permutations using the PC-2 matrix. So the each K i

has a length of 48 bits.

Figure 4.2: Left Shifts Table

Figure 4.3: PC-2 Table

13

Then, plain text is permuted using the Initial Permutation (IP) table.

The output of the permutation results with the IP table are divided into 2

parts, namely L0 and R0 where each of it consists of 32 bits. Then with the f

function, it rotates 16 times with 1 <= i <= 16 with 32bit data and a 48bit K i key

then X-OR. For i 1-16, count with

Li = Ri-1

Ri = Li-1 + f(Ri-1, Ki)

The results of the final block of i16 are L16 and R16. For each permutation,

32 right bits are taken from the previous results and 32 left bits from the current

step. In this right 32-bit step, X-OR is the left 32-bit from the previous step using

the calculation f. Thus becoming

R1 = L0 + f(R0, K1)

Figure 4.4: IP Table

14

Then encrypt the Ri-1 32 bit data to 48 bits with the Expansion table (E).

So the results of the first 3 bits in E (R i-1) are bits in position 32, 1 and 2 of

Ri-1 and the last 2 bits of E (Ri-1) are bits in positions 32 and 1. Furthermore, the

output of E (Ri -1) is X-ORed with the Ki key.

Ki + E(Ri-1)

Now the length of Ki + E (Ri-1) are 48 bits which can be grouped into 8

groups where each group has 6 bits. Each group is named from S1 to S8. Then

each group is substituted with S-Box where in the first group is substituted with

S1, the second group is substituted with S2 and so on.

Figure 4.5: Expansion Table

15

Figure 4.6: S-Box Table

16

The next stage is the result of the calculation f, permutation is done with

the P-Box table to get the value of f:

f = P(S1(B1)……S8(B8))

Furthermore, it was found that L2 = R1 and R2 = L1 + f (R1, K2) and so on,

which left 16 turns. At the end of round 16 you will get L16 and R16 and then

reverse the two sequence blocks into 64-bit blocks.

R16 L16

Figure 4.7: P-Box Table

17

The application of this final permutation is done by IP-1 table.

The final result the permutation with IP-1 table is ciphertext in bit format

and then converted to hexadecimal.

For encryption of CBC DES mode algorithm, each plaintext is XORed

with the previous ciphertext. To make each message unique, the use of vector

initialization must be used in the first block so that each ciphertext depends on the

previous one.

Figure 4.8: IP-1 Table

Figure 4.9: ECB Encryption Mode

18

To illustrate the process of image encryption, the following is an

encryption mode flowchart DES ECB and CBC algorithm.

Figure 4.10: CBC Encryption Mode

Illustration 4.1: Flowchart of
Encryption Process

19

In the image encryption process, the first thing to do is to change the

image to base64 so that it becomes a string whose length depends on the

resolution of the image. The greater the image resolution, the longer the resulting

string. Enter a key that is 8 bytes in size. The time is calculated when program

start encrypting until the program finishes encrypting.

4.2.2 Decryption

For the decryption method, the steps to be done is only to reverse the same

steps as above by reversing the order in which subkeys are applied.

Figure 4.11: ECB Decryption Mode

20

Just like the encryption process, decrypting process only needs to reverse

the process of encryption with vector initialization added.

To illustrate the process of image decryption, the following is a decryption

flowchart of the ECB and CBC DES mode algorithm.

Figure 4.12: CBC Decryption Mode

21

The image decryption process starts with the encryption results in the form

of ciphertext which is decrypted by using the same key during the encryption

process. The results of the decryption will produce a plaintext where the plaintext

is the result of encoding base64 from the image. After getting the plaintext,

decodes base64 is used to convert the plaintext into an image.

Illustration 4.2: Flowchart of
Decryption Process

	Cover
	APPROVAL AND RATIFICATION PAGE
	STATEMENT OF ORIGINALITY
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1 Literature Study
	3.2 Collecting Data
	3.3 Analysis
	3.4 Implementation
	3.5 Testing

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.1.1 ECB Mode
	4.1.2 CBC Mode
	4.1.3 Encryption and Decryption Speed

	4.2 Desain
	4.2.1 Encryption
	4.2.2 Decryption

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.1.1 Image Input
	5.1.2 ECB Encryption Mode
	5.1.3 ECB Decryption Mode
	5.1.4 CBC Encryption Mode
	5.1.5 CBC Decryption Mode

	5.2 Testing
	5.2.1 Encryption
	5.2.2 Decryption

	CHAPTER 6 Conclusion
	References
	Appendix

