

14

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1. Implementation

1. import math

2. import numpy as np

3. temp_euclid = *+

4. for b in uji_tfidf:

5. i = 0

6. e_doc = np.zeros(len(liststem))

7. for doc in liststem:

8. for a in list_tfidf:

9. square = a*'info'+*i+*'w'+-b*a*'term'++

10. temp = math.pow(square,2)

11. e_doc*a*'info'+*i+*'doc'++ += temp

12. e_doc*i+ = math.sqrt(e_doc*i+)

13 . i+=1

14. temp_euclid.append(e_doc)

15. for d in temp_euclid:

16. minv = min(d)

17. result = (np.where(d == np.amin(d)))

18. print(label*result*0++)

19. print(minv)

20. print(d)

15

Line 1-2 import python library math and numpy, used for calling

mathematic function. Line 3 makes variable temp_euclid, Line 4 calls uji_tfidf

variable as b, line 5 declares „i‟ equal with 0. Line 6-13 calculate KNN algorithm,

all array from testing document is called then the result of Tf-Idf testing is minus

by Tf-Idf training and squared, after that the result is added by all texts inside

document start from zero, then every words is multiple by the result erlier. Finally,

data training which is score closed to data testing will shown with the rank and its

result with every text in document.

5.2. Testing

Illustration 5.2.1: Scraped Document

Above is an example document that has been scraped from Twitter using

the API key and Access Token. The data taken is timestamp, tweet, user account,

number of hashtags, and total followers. Label on the right side is supervised by

manual way.

16

Illustration 5.2.2: Document After Pre-processing

The picture above is a form of tweets in the document that has gone

through the pre-processing stage. Each tweet will be divided into words where it

has become just a basic word without symbols, numbers and common words.

Illustration 5.2.2: Term Frequency Result

Illustration 5.2.3: Inverse Document Frequency Result

17

Illustration 5.2.4: Tf-Idf Result

The above results are Tf-Idf from the data to be tested. It may took a few

minutes to calculate the document using python because of how massive the

document is. Save the result for k-Nearest Neighbour calculating.

Illustration 5.2.5: Tf-Idf Data Training Result

Data training have to be tested, therefore the data will be calculated using

k-Nearest Neighbour algorithm.

18

Illustration 5.2.6: k-Nearest Neighbour Algorithm Formula

Illustration 5.2.7: k-Nearest Neighbour Algorithm results

The number on top is where the number of row data testing is inside data

training and the side of it is its label. Below it is the value of data testing and the

like-table number is every value of data training. If the value of training is near

testing value, it declared as its name. .

