
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

This project used java programming and Netbeans for the GUI. The

program divides to 4 views. The first view is Home. This is a blank view when the

program start running. The second view is Embedding. This is a view to embed

message to an image. The third view is Extraction. This is a view to extract

message from an image. The last view is About. This view shows the title of this

project and another information of author.

This is the view of Embedding section. User can choose image that will be

the cover image with click on the Pilih Gambar button. Then fill the Pesan field to

17

Illustration 5.1: Example Embedding

18

input the message. After that input the key in Kunci field. The illustration above is

the example that already input by user. Click on Submit button to embed the

message into the image.

Below is the code will process:

The code above starts with checking the fields. If there a blank field in the

program, a pop ups window will appear and will tell you to fill the blank field. If

there is no blank field, then the embedding process will be start. First the program

will read the key, the path of image, and the message. *888# will be added to the

end of message as a marker. Then the program will convert message to binary.

Then the converted message will be spread with 4 scales. After that, the program

will XOR the characters of key. The result of XOR will be seed value for LCG

Formula. Line 650 will be process seed value to LCG Formula to generate 4

random numbers. Then the program will convert this 4 random numbers to binary.

After that, the program will XOR it with the result of spread message. Then the

program will embed it to the cover image. The output of this process is image that

has message inside it or can be called as stego image.

Illustration 5.2: Embedding Code

19

This is the view of Extraction section. User can choose image that has

message inside it with click on the Pilih Gambar button. Then input the key on

Kunci field. The illustration above is the example that already input by user. Click

on Submit button to extract the message from the image.

Illustration 5.3: Example Extraction

20

Here is the code of extraction:

The code above starts with read the key and the path of image. Then

program will extract all of LSB value from image to String pesan. After that, the

program will XOR the characters of key. The result of XOR will be seed value for

LCG Formula. LCG Formula will generate 4 random numbers. Then the program

will convert this 4 random numbers to binary. After that, the program will XOR it

with String pesan. The result will be despread with 4 scales. Convert the result to

characters. When the program found *888# in the converted characters, the

program will stop and shows the result of this process in a pop ups window.

Illustration 5.4: Extraction Code

21

When user clicks on About Button, this pop ups window will appear. The

view shows the title of this program and authors name. The title is Aplikasi

Steganografi Spread Spectrum v1. And the authors name is Andy Wijaya.

5.2 Testing

This sub chapter will explain about the result of this research. There are 2

test that will be examine to the program. The first test is examine the program

with different messages length and check the quality of output with parameter

Peak Signal to Noise Ratio (PSNR). Then the second test is examine the program

with different keys to decrypt the message.

Illustration 5.5: About View

22

1. Message Length

The program will be examine using several messages with 1 key: unika.

This key will be assembled in 4 messages with different character length. Those

are 11 characters, 191 characters, 684 characters and 960 characters and it will use

100 sample images with 320x277 pixel. This sample images will be embed by

those different character length. Then the quality of the result images will be

examine using Peak Signal to Noise Ratio (PSNR). The PSNR value measured in

decibels (dB).

The chart above shown the quality of 4 different messages length that

examine above. It shown that the different of character length have impact on

PSNR value. The message which have 11 characters have average of PSNR value

around 68 dB to 78 dB. And the message which have 960 characters only have

average of PSNR value around 50 dB to 60 dB. The longer character embed on

the image will have lower PSNR value.

Illustration 5.6: PSNR result of testing different character length (higher is better)

23

2. Different key

The program will be examine using several keys. Those are andy, akinu,

and aaaa. First embed 10 sample images with message uniqlo and the key that

used is unika. Then the result of test will be entered into the table with 2 columns.

The first column shows the name of sample images. The second column shows

the result of the examine.

1. Test 1 is examine the stego images with andy as the key:

Table 5.1: Test 1

Filename Result

1_stegano.png ÿäãûæå ²²²©Æ> iá ¬C ^� �
Ä�

Ïxï_5O9z Uú²6 #�� � #2ÁÊÔmT�

2_stegano.png ÿäãûæå ²²²©9999999999999y9999999999999999999999999

3_stegano.png ÿäãûæå ²²²©#«p#«p#«p#«p#«p#«p#T âT âT âT âT â� � � � �
T âT� �

4_stegano.png ÿäãûæå ²²²©ÆÆKp#TFø ý Á2 x ÆÆÆ9#vÆÆ� � � �
ÆÆÂcq.À## Ç9#v�

5_stegano.png ÿäãûæå ²²²©»låä Í ã[ûTkzÈxwL:Ü#ZN B» JO #a"� �� � � �
Òj ;�

6_stegano.png ÿäãûæå ²²²© ?Ù9*òÕ =1� �

7_stegano.png ÿäãûæå ²²²©#H#Ë$ðÉ« ã#� â#
3øoÉ#P#þ#1ìQwèÉS d© õå� �

8_stegano.png ÿäãûæå ²²²©ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

9_stegano.png ÿäãûæå ²²²©#Uc

10_stegano.png e# ¿<Û a6ùá m*Ò¿� �� �

24

The table 5.1 shown the result of decrypted stego images using andy as key. It

shown the result of 10 examined images. All the result shown the false message.

2. Test 2 is examine stego images with akinu as the key:

Table 5.2: Test 2

Filename Result

1_stegano.png uniqlo

2_stegano.png uniqlo

3_stegano.png uniqlo

4_stegano.png uniqlo

5_stegano.png uniqlo

6_stegano.png uniqlo

7_stegano.png uniqlo

8_stegano.png uniqlo

9_stegano.png uniqlo

10_stegano.png uniqlo

The table above shown the result of decrypted stego images using akinu as key.

The key that used to decrypt in this test has same characters with the right key. So

in this test, the key that used is unika with different characters position. All the

result shown the true message.

3. Test 3 is examine stego images with aaaa as the key:

Table 5.3: Test 3

Filename Result

1_stegano.png uniqlo

2_stegano.png uniqlo

25

3_stegano.png uniqlo

4_stegano.png uniqlo

5_stegano.png uniqlo

6_stegano.png uniqlo

7_stegano.png uniqlo

8_stegano.png uniqlo

9_stegano.png uniqlo

10_stegano.png uniqlo

The table 5.3 shown the result of decrypted stego images using aaaa as key. The

key that used is very different with the right key. But all the result shown the true

message.

	Cover
	APPROVAL AND RATIFICATION PAGE
	STATEMENT OF ORIGINALITY
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	3.1 Study Literature
	3.2 Collecting Sample
	3.3 Applying Method
	3.4 Testing
	3.5 Report

	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Design

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Appendix

	Bookmarks from ori.pdf
	STATEMENT OF ORIGINALITY

	Bookmarks from chapter 2.pdf
	CHAPTER 3 Research Methodology

	Bookmarks from chapter 2.pdf
	CHAPTER 2 Literature Study

	Bookmarks from chapter 2.pdf
	CHAPTER 2 Literature Study

