
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

The first step, the users will be asked to upload the USG images obtained

from the source. After that, change the images into grayscale and then process it

into filtering. The next step is, the images will be returned from the pixel array

into JPG. And then calculate the images by MSE to get the PSNR value for more

accurate result.

1. import cv2
2. import numpy as np
3. import math
4. ColorImg=cv2.imread('/home/piter/Deni/Bimbingan/FotoUSG/

bayi54.jpg')
5. GrayImg = cv2.cvtColor(ColorImg, cv2.COLOR_BGR2GRAY)
6. cv2.imshow('Gambar Asli', ColorImg)
7. cv2.imshow('Gambar Gray', GrayImg)
8. cv2.imwrite('Grayscale.jpg',GrayImg)
9. cv2.waitKey(0)
10.cv2.destroyAllWindows()

Line 1 to 3 is for the import of library opencv, numpy, and math. Line 4 is

for take the USG images from the folder, while line 5 is for change it into

grayscale. Line 6 to 10 is to show the result of original images and the grayscale

one, also to save the grayscale one so that the image will appear when the

program is started.

11. for a in range(Tinggi - AreaPix):
12. for b in range(Lebar - AreaPix):
13. x = 0
14. for i in range(Baris, Baris + Kernel):
15. y = 0
16. for j in range(Kolom, Kolom + Kernel):
17. MaksKernel[x][y] = GrayImg[i,j]
18. if x == 1 and y == 1:
19. data = {
20. "x": i, "y": j, "value":
GrayImg[i,j]}
21. y +=1
22. x +=1
23. NilaiMin = np.min(MaksKernel) #Sort Pixel Min

19

20

24. NilaiMaks = np.max(MaksKernel) #Sort Pixel Max
25. Hasil = (int(NilaiMin) + int(NilaiMaks))/2

Line 11 to 22 is maximum kernel to determine the position of the pixels to

be filtered. The writer uses 3x3, 5x5, 7x7, and 9x9 maximum kernel; the larger the

kernel, the wider the calculation area. Line 23 to 25 is calculating the midpoint

filter algorithm by finding the minimum and maximum values in the kernel, and

then it is divided by two.

26. from copy import copy, deepcopy
27. CopyImg = deepcopy(GrayImg)
28. for i in index:
29. temp = int(i['value'])
30. CopyImg[i['x']][i['y']] = temp
31. print(CopyImg)
32. cv2.imwrite('/home/piter/Deni/Bimbingan/MidpointK3/

bayi1.jpg',CopyImg)
33. cv2.imshow('Gambar Gray', GrayImg)
34. cv2.imshow('Midpoint.jpg',CopyImg)
35. cv2.waitKey(0)
36. cv2.destroyAllWindows()

Line 26 is for deep-copying. Line 27 is for initializing the USG grayscale

images. Line 28 to 31 is looping process for creating the images that have been

filtered. Line 32 is storing the filtered images in JPG format. Line 33 to 36 is

displaying the grayscale images and displaying the filtered images. The images

will appear once the program is started.

37. for a in range(Tinggi - AreaPix):
38. for b in range(Lebar - AreaPix):
39. x = 0
40. Hasil = 0
41. for i in range(Baris, Baris + Kernel):
42. y = 0
43. for j in range(Kolom, Kolom + Kernel):
44. MaksKernel[x][y] = GrayImg[i,j]
45. Hasil += (1.0/MaksKernel[x][y])
46. if x == 1 and y == 1:
47. data = {
48. "x": i, "y": j, "value":

GrayImg[i,j]}
49. y +=1
50. x +=1
51.
52. NewPixel[1][1] = math.ceil(JmlhPix/Hasil)
53. data['value'] = math.ceil(JmlhPix/Hasil)

21

 Line 37 to 50 is setting the pixel position that will be filtered by

maximum kernel. The writer uses 3x3, 5x5, 7x7, and 9x9 maximum kernel; the

larger the kernel, the wider the calculation area. The pixels will be divided by one

first in the line 45. Line 52 to 53 is to calculating the harmonic mean filter

algorithm, which is the kernel value is divided by the average of pixels.

54. mse = np.square(np.subtract(CopyImg,GrayImg)).mean()
55. print mse
56. pnsr = 10 * math.log10(255*255 / mse)
57. print pnsr

Line 54 to 55 is calculating the average of the filtered images. Line 56 to

57 is calculating the PSNR for the more accurate level of the filtered images.

5.2 Testing

The first test is inserting the USG images file. Second is changing into

grayscale to facilitate the filtering process. If “true” word appears in the output, it

means the process is success.

22

The code above shows the size of USG images resolution that have been

in grayscale, and shows the pixel value of the images.

23

The code above is for the midpoint filter algorithm calculation. Kernel

above uses 3x3. If the code is correct, the appeared output is the pixel value which

has been already in the 3x3 kernel, and the result is from the midpoint filter

calculation.

The code above is for harmonic mean filter algorithm calculation. The

kernel from the picture above uses 3x3 kernel. If the code is correct, then the

appeared output is the pixel value which has been already in the 3x3 kernel, and

the result is from the harmonic mean filter calculation.

24

The code above is the process of making pixel that has been filtered and

stored in the index, to be used as an image of the JPG format.

The code above is for the process of calculating the MSE process to

calculate the average images that have been filtered. The PSNR functions is to

measure the accuracy level of filtering of the images.

	Cover
	STATEMENT OF ORIGINALITY
	ABSTRACT
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Scope
	1.4 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	CHAPTER 4 Analysis and Design
	4.1 Analysis
	4.2 Design

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References
	Jurnal
	Appendix
	Coding MIDPOINT FILTER
	Coding HaRMONIC MEAN FILTER
	PHOTO DOCTOR Visit

