CHAPTER 3
RESEARCH METHODOLOGY

Some steps that must be done in this project are :

1.

Prepare for the Jetson TX?2

First of all, We flash Jetson' BX2 with ubuntu as an operating system.
NVIDIA has peovided™ 3 pdckage [ortheshibiaics called jetpack, in this
project weaiséd version 3.3, we only need CUDAwC compiler, TensorRT
and the ppency,and aftecthatweneed (o upgrade the opencv to be opencv

version 3.4.6 .

20" Prépare for tfaining the ij@crtf&tﬁcﬁons

1.'We took 2200 photos whose images include’single and'multiple car
objectsimages at different angles, such.that YOLO) can detect multi cars in
one image. Examples of photos taken at different angle are/shown below.

Figure 1. Sample Photos USed for Feaining

2. We convert those high resolution images to low resolution in order to
make it easier for training in YOLO. Even though YOLO is trained with

low resolution images, object detection is still accurate

3. We assume that images on the left and right of Figure 2 are named as
1.jpg and 2.jpg respectively, then we label each image using Bbox labeling

annotation tool to obtain the coordinate (x, y, w, h) where x and y are the



9

left top of coordinate of car object, and w and h are width and height of
coordinate bounding box respectively and the results of the labeling are

shown in Figure 3.

{788 2475 5 Lmy, aad
4200 742 > 125k, 344)

65, 2440 = 1139, 1061

Vidth and Height are the
i in the first column is
the class number, i.e. 0 is the clas§"of car and 1 is the class of human, and
etc. The next four entries are all floating points in which values are from 0

and 1. The results of the normalized coordinates are saved in the same file.

0 0.222 0.6758 0.13333333332 0.85

0 0.7772 0.78 0.767676 0.895

0 0.127333333 0. BO66666 0.459 - 0.233334

0 0.2323 0.13333334 0.595747 0.4445

0 0, 6?6333222 0.456987 0.133333333 0. 86757

0 0.77 0.83656557 0.5 0.7777777775



Figure 4. Resull of Normalized From the Coordinate.

5. split the images dataset randomly by 90% and 10% into train.txt and
test.txt respectively. The car.data file is used to define the number of
classes, the location of train.txt and test.txt and the output file of training
result; whereas the car.names file is used to define the name of objects to

be trained

0. Downlead Y OLO pre-trained model file and medily the configuration
file for GPU VRAM requirementy-baich size, filters and class to meet our

requirements.

4+The training is run om TX2.{or about 9 hours when theyaverage loss

score close to zero and mo longer decreases. Final weight file can be

obtained after the training.
Detect the motion

Because we want to set the objeet detection will on work if there is an
object.motion-of the current-image, by subiracting every pﬁ(el value of the

current fmage from the prévionsimage, using the eguation below:

motion = L7 gt Y™ e « width + height 4 widvhess)j

There is a three-level nested loop. The top-level is iterated for 3 channels
and the second level is iterated for horizontal traversal and third-ievel
traverses horizontally from y to the height of the image. This loop is

parallelized by pragma omp parallel for directive with a reduction clause,

int calculate_motion(image old_img, image cur_img, boundary subimg ){
#pragma omp paraliel for reduction{+:scorej
for {int c=0;c<3;c++)
for (int i=subimg.x;i<subimg.width;i++)
for (int j=subimg.y;j<subimg.height;j++)
score+=old_img.data[c*img.width*img.height+i*img,width-+j]
- cur_img.data[c*img.width*img.height+i*img.width+j];
retum(score);

¥




Code i: Simpie Motion Detection Funetion Using OpenMP
Create the parking availability detection

The parking slots are manwallyscoordinated, or it can be detected with
OpenCV lingsdetection—algorithnt~~li-depends on the number of cars
detected’and-the total number slots; for every car-detected, if the bounding
box of a detected Car is+r the area of patking slet, then it is occupied and it
drawsiwith.a solid red line @lsethe slot is avgilable and mumber of empty
slot is incremented, and it draws with a dash green line as Showirin Figure

D.

vaid availability(struct detected cari{
occupied =0,
available = D;
for(int i=0;itotal_cani++}{
for{int j=0;j<slotij++){
it (carfil.left=sloti].left && car{i].top>slotfil.top &&
carlil.right< slotfil.right && car[il.bot< slot{il.bot) {
draw_hox_width(img, 900,100,1000,200,5,255,0,0)
occupiedd +;
}
else available++¢

1

Code 2. Parking Availability Detection, Algorithm

Figure 5. Result of the Parking Availability Detection





