Sensorial Characterization of Foods Before and After Freeze-drying

Valentina V1, Pratiwi AR1, Hsiao PY2, Tseng HP3, Hsieh JF*1 and Chen CC*1
1Department of Food Technology, Soegijapranata Catholic University, Indonesia
2Department of Food Science, Fu Jen Catholic University, Taiwan
3Ph.D. Program in Nutrition & Food Science, Fu Jen Catholic University, Taiwan
*Corresponding author: Chen CC, Ph.D. Program in Nutrition & Food Science, Fu Jen Catholic University, Taiwan

Received: October 11, 2016; Accepted: November 10, 2016; Published: November 16, 2016

Abstract

Freeze-dried foods can be easily transported at normal temperatures, stored for a long period of time and consumed with a minimum of preparation. The purpose of the study was to investigate the study the freeze-dry processing, to study the sensory characteristic of the initial and final dried product. The food sample used banana, apple, kiwi, baked sweet potato, tofu, pudding, plain yogurt drink and brown rice milk. Physico-chemical quality parameters such as color values, texture, shape and taste profiles also moisture content were determined for the fresh and freeze dried samples. The moisture content value decreased after freeze dry processing whereas color brightness values increased, the original color and the shape of the sample is maintained, the texture become crisp, spongy, soft, easily to destroy and crumbly when exposed with tongue.

Keywords: Freeze-dried foods; Freeze-dry processing; Moisture content

Introduction

The food processing and preserving may partially or totally affect the quality of a food product. Various changes may occur in physical, chemical or biological characteristics of foodstuff during processing, storage and distribution [1]. The physical and biochemical changes of the foodstuff can reduce the product quality and the efficiency of the process, whereas the quality standard of food is importance to increasing the consumer’s choice [2]. There are some main physical and biochemical changes as below:

- Physical Changes
- Glass transition

Absorption of additional moisture can lead to a state of amorphous disequilibrium, which brings with it a transformation from a glass solid state to a plastic fluid state when the glass transition temperature is reached [1]. The glass transition temperature of dry solid would be an important optimization parameter can be used as useful tool for the choice of the most appropriate materials to be freezing-dried [3].

Texture

Texture is one of the most important properties connected to product quality. Factors that affect texture include moisture content, composition, variety, pH, product history (maturity) and sample dimensions. The chemical changes associated with textural changes in fruits and vegetables include crystallization of cellulose, degradation of pectin and starch gelatinization. High air temperatures (particularly with fruits, fish and meats) cause complex chemical and physical changes to the surface and the formation of hard impermeable skin. This is termed “case hardening”.

Color

The conservation of color is considered indications of quality in dried fruits given that non-enzymatic browning processes develop during the drying process [4]. Freeze-dried fruits better maintain red and yellow colors than fruits dried using traditional methods [5]. The loss color in freeze-dried product is compared to the color loss in air-dried products. The color loss is noted, due to the decomposition of pigment [6]. Rapid freezing can produced a more intense white value.

Biochemical changes

Browning reactions: Browning reactions are important in terms of the alteration of appearance, flavor and nutritive value. Browning is undesirable for fruits, vegetables, frozen and dehydrated foods as it results in off-flavors and colors. The effect of browning is the lowering of the nutritive value of the food article. Rate of browning reactions depends on temperature of drying, pH and moisture content of the product, time of heat treatment and the concentration and nature of the reactants. Browning reactions change color, decrease nutritional value and solubility, create off flavors and induce textural changes. In freeze-dried, browning occurs because an enzymatic reactions.

Lipid oxidation: Lipid oxidation is responsible for rancidity, development of off-flavors and the loss of fat soluble vitamins and pigments in many foods, especially in dehydrated foods. Factors that affect oxidation rate include moisture content, type of substrate (fatty acid), extent of reaction, oxygen content, temperature, presence of metals, presence of natural antioxidants, enzyme activity, ultraviolet light, protein content, free amino acid content, other chemical reactions. The effect of oxygen on lipid oxidation is also closely related to the product porosity. Freeze-dried foods are more susceptible to oxygen because of their high porosity.

One of the oldest methods of food preservation is dehydration. Dehydration is a means of preserving foods in a stable and safe condition as it reduces water activity and extends self-life much longer than the food in fresh condition [7]. There are so many conventional thermal methods, including airflow drying, vacuum drying and freeze-drying, result in low drying rates in the falling rate period of drying [8]. Freeze-drying is not really a new process. Primarily it was developed for the pharmaceutical industry and drugs drying for nearly forty years before applied to the food industry. Freeze-dried foods have some high quality characteristic compared to products of...
alternative drying process such as aroma and shape retention, high porosity, good rehydration, superior taste and low bulk density. Freeze-drying is based on the dehydration by sublimation of a frozen product where the water or solvents are removed as a vapor from the frozen material in a vacuum chamber [9]. Very good physical and chemical properties of food and biotechnological products make this method the best for drying exclusive products.

Freeze-drying is an expensive process for food industry of dehydrated product. Equipment innovation and pre-treatment of raw material can reduce the time and energy that needed for this process. Nowadays, freeze-drying process is used to produce high quality value products for example coffee, crispy fruits and vegetables, ingredients to ready to eat foods (corn, flakes, cereal bars, ice cream or pastry making) and some aromatic herbs. Therefore, the general purpose of this research was to study the sensory characteristic of the initial and final dried product.

Materials and Methods

Sample preparation

Eight food samples, namely banana, apple, kiwi, baked sweet potato, tofu, pudding, plain yogurt drink and brown rice milk were purchased from the supermarket in Taipei, Taiwan. For all the fruits, potato, tofu, pudding, plain yogurt drink and brown rice milk were peeled first and cut into 0.3 cm thick slices, apple were peeled and cut into (1x1x1) cm³, tofu were cut into (1.5x3x1) cm³, pudding were cut into three parts, all of samples were using a stainless steel knife before drying, then, plain yogurt drink and brown rice milk were poured into the OPP plastics (±200 ml).

Sensory evaluation

The sensory evaluation of the food samples was carried out by a taste panel of five untrained judges. The panelists were asked to indicate their preference for each sample, based on the quality attributes of color, shape, texture and taste before and after freeze-dry processing.

Freeze-dry processing

The food samples used freeze dryer (FD24-3S-12P, Taipei, and Taiwan). For the freeze-drying experiment, the food samples were spread out on the flat metal trays and frozen at -24±1°C for 3 days in the freezer. Then, the frozen samples were put in the freeze dryer at -40°C, 60 millitorr for three days until they were completely dried and measurement.

Determination of color

After the freeze-dry processing, the evaluation of color of three pieces each kind of food samples were carried out using a tristimulus colorimeter (Spectrophotometer SP60, X-Rite, Incx. Grandville, MI, USA). The system provides the values of three color components. L* (black-white component, luminosity) and the chromatin coordinates. a* (+ red to-green component) and b* (+ yellow to -blue component) [10].

Determination of moisture content

Based on the [11] method, all food samples were weighed by Analytical Balance and determined the moisture content. The food samples were under specified conditions such as freeze-dries processing and the loss of weight is used to calculate the moisture content of the sample. The method to count the moisture content was shown in below:

\[MC= \frac{(W-d)}{W} \times 100\% \]

W= Wet weight, D= Weight after drying

Statistical analysis

Data were expressed as means ± standard deviations. The data were analyzed using Statistical Package for the Social Science Software (SPSS for Windows, version 10.0.7C, SPSS Inc, IL, and USA). Statistical significance among the treatments was determined by one way ANOVA followed by Duncan’s multiple range tests. Three determinations for each treatment were made and the significance level was set at P<0.05.

Results and Discussion

Raw materials and pretreatment

All of the food that will be freeze-dried must be checked first for the contamination and the purity [12]. Fruits, vegetables and some other edible foods are tested for bacterial counts and spoilage. Some drinks are purchased as a pre-brewed concentrated liquid. Unlike the water, the oil is not removed during the drying process [13]. Almost all fruits and vegetables can be freeze-dried. Liquids, thin portion of meat and small fruits and vegetables can be freeze-dried easily. Fruits can be cut in half or sliced. Thin, uniform, peeled slices dry the fastest. Apples can be cored and sliced in rings, wedges or chips. Bananas can be sliced in coins, chips or sticks. Spray drying is a common method for producing powder from liquid; it is more simple and cheap, because actually freeze drying is a method of preservation of foods and biological materials [14].

Freeze-drying principle

The main principle in freeze drying is a phenomenon called sublimation. Sublimation is the transformation of ice directly into a gas without passing through a liquid phase [15]. Sublimation occurs when the vapor pressure and the temperature of the ice surface are below those of the triple point (4.58 mm Hg, 0°C), as shown in the pressure-temperature phase diagram of pure water [15].

Freeze-drying separation method involves the following four main stages:

- Sample preparation
- Freezing stage
- Primary drying stage and
- Secondary drying stage

Annealing

In the majority of lyophilized functional properties and stability of the lyophilization product, annealing is an optional step that used to crystallize the formulation component. If the solute separates out in crystalline form, it is known as the eutectic temperature. In contrast, if an amorphous form is formed, the temperature is referred to as the glass transition temperature, which leads to “melt back” or “collapse” phenomenon [15].
Freezing

In which the liquid sample is cooled until pure crystalline ice forms part of the liquid and the reminder of the sample is freeze-concentrated into a glassy state where the viscosity is too high to allow further crystallization. The objective of the freezing stage is to freeze most of the water originally present in the product for its posterior sublimation, generally in a blast freezer at a temperature of about minus 40°F [15].

Primary drying

This step is carried out at pressures of 10-4 to 10-5 atmospheres and a product temperature of -45 to -20°C. Sublimation during primary drying is the result of coupled heat and mass transfer process. When the water molecules sublime and enter the vapor phase, they also keep with them a significant amount of the latent heat of sublimation (2840 KJ/kg ice) and thus the temperature of the frozen product is again reduced. The time at which there is no more frozen layer is taken to represent the end of the primary drying stage [15].

Secondary drying

The desorption of the remaining water from the solids is called secondary drying while maintaining low pressures. The bound water is removed by heating the product under vacuum. The following product temperatures are usually employed: (a) between 10 and 35°C for heat sensitive products and (b) 50°C or more for less-heat-sensitive products [15].

Structural changes

The sought after freeze-drying product are porous that maintain their volume, can have fast and nearly complete rehydration when water is added and do not shrink [14]. However some freeze-dried products undergo undesirable structural changes. Microscopy can be used to study structural changes in freeze-dried fruits and to find a relationship to some physical properties [16]. Some phenomenon’s that can occur during the freeze-drying process are:

1. Collapse = loss of structure, reduced pore size and volumetric contraction [17].

| Table 1: Consensus attribute lists before and after freeze-drying. |
|---|---|---|---|
| Sample | Attribute | Before | After |
| Banana | Color | Bright yellow skin and creamy white flesh | Whish yellow flesh |
| | Texture | Soft, free from bruises or another injury | Crisp and soft texture, not easily destroyed |
| | Taste | Sweet and creamy | Sweet inside, the original flavor is maintained |
| | Shape | Long curving cylinder cut circle | The shape doesn’t change just very little shrink |
| Apple | Color | Red skin, white flesh and black seeds | Red, smooth skin, white flesh with a little browning in the surface |
| | Texture | Smooth skin, firm flesh and crisp | Soft, smooth tough, firm and spongy texture |
| | Taste | Sweet flavor and juicy | Sweet inside, little sour and the original flavor is maintained |
| | Shape | Rounded shape of flesh | The shape is maintained |
| Kiwi | Color | Dull greenish-brown skin, bright green-golden flesh and black edible seeds | Whisht green flesh and black seeds |
| | Texture | Fibrous and fuzzy | Fibrous, easily crumble when exposed to air with smooth and spongy texture |
| | Taste | Sweet and citrusy | Very sour, citrusy and little sweet, but the original flavor still maintained |
| | Shape | Like chicken’s egg cut circle | Shape still maintained |
| Tofu | Color | White | More white |
| | Texture | Soft, smooth, spongy, wet, firm and chewy | Crisp texture, very easy to destroyed crumbly when exposed to air with smooth and spongy texture |
| | Taste | Subtle flavor, sweet taste and slight earthy | Creamy has a strong soy bean flavor |
| | Shape | Block | The shape is maintained just shrink |
| Bake Sweet Potato | Color | Clean orange flesh and bright, brown skin that easily removed from the flesh | Become whiter and orange |
| | Texture | Easy to destroyed, smooth, moist and firm | Very crisp and slightly hard texture not easily to destroy |
| | Taste | Sweet taste | Starchy and little sweet |
| | Shape | Long non-symmetric cylinder flesh | Still maintained |
| Padding | Color | Bright yellow color and shiny, brown on top | Whiter outside and yellow |
| | Texture | Slightly thicker seeming broth, smooth and soft, firm but not hard and elastic | Very crisp, soft and dry |
| | Taste | Sweet | Sweet and very sticky inside |
| | Shape | Non-symmetric | |
| Plain Yogurt Drink | Color | Yellowish-white | Whish yellow solid, like a crystal grains |
| | Texture | There is no award but there’s bubbles, compact, smooth, little thick viscous | Smooth, melted and clot when exposed to air with smooth and easy to destroy |
| | Taste | buttery, creamy, fresh and plain | Little sour, buttery and creamy |
| | Shape | Liquid | Solid like a crystal grains |
| Brown Rice Milk | Color | Brown and clean | Brown and clean |
| | Texture | Thinner in consistency than soy milk, smoothness, heterogeneous and watery | Very easy to destroy and melted in the tongue |
| | Taste | Sweet, creamy thick, firm and milky also has a nice flavor | Sweet and has a strong rice flavor |
| | Shape | Liquid | Solid like a crystal grains |
In general, the drying treatment resulted in significantly improved whiteness increased to yellow (+). Each has its own stretch of values between -60 to +60. The parameter measurement spectrum of colors between green (-) to red (+), while stretch value of 0-100. Parameter brightest white (high value) and midnight black (low value), with a parameter of the product.

As shown in (Table 1), all of the fruit after freeze drying become to more white, spongy, smooth, firm, the original taste doesn’t change and the shape is maintained. For the bake sweet potato and tofu the color become whiter, the texture more strong, crisp and the shape is maintained, but the taste become sticky and starchy. For the liquid sample, the shape become solid like crystal grains, the texture become smoother, very easy melt in the tongue and has a strong original taste of each sample. Also, interestingly, some fruits are perceived as very sour when dried material is contacted with water, then the volume changes [16].

As shown in (Table 2), the results of color measurements of food samples before and after freeze-drying. The color measurement between before and after freeze-drying. The color parameter indicates whiteness of the product. L* is a gradation of the skin brightness between the brightest white (high value) and midnight black (low value), with a stretch value of 0-100. Parameter a* shows the gradations of color measurement spectrum of colors between green (-) to red (+), while the parameter b* show gradations of color spectrum between blue (-) to yellow (+). Each has its own stretch of values between -60 to +60. In general, the drying treatment resulted in significantly improved whiteness increased L* value from 52.09 to 92.86, a* value from 0.42 to 11.12 and b* value from 9.02 to 36.54. Therefore, this research results were similar with [19] and [20], in L* value, there were clearly significant difference for apple, kiwi, tofu, sweet potato, yogurt and brown rice milk. During freeze dry processing, at low temperature, freeze drying removes water by sublimation of ice and prevents enzymatic browning reactions. The browning was not promoted due to less oxygen and lower temperature in freeze drying, resulting in a greater increase of L* values. In a* value, there were clearly significant difference for banana, apple, tofu and yogurt. In b* value, there were clearly significant difference for banana, apple, tofu and pudding.

Drying removes the moisture from the food so bacteria, yeast and mold cannot grow and spoil the food, so can extend the shelf life. Drying also slows down the action of enzymes, but does not inactivate them. Because of drying removes moisture, the food becomes lighter in weight. Low humidity allows moisture to move quickly from the food to the air. The result in (Table 3) depict the moisture content of the final samples depend on wet basis. Tofu was found to have the highest moisture content (0.905%) whilst sweet potato had the lowest (0.635%). The application of freeze-drying process to foods is most important appears to be for meats such as beef, pork, chicken and fish. The second most interesting commodity group is fruits and vegetables. The functional properties of the freeze-dried milk are not as desirable as those of spray-dried milk [21]. Found that overall flavor and storage characteristics of freeze-dried whole milk are essentially the same as spray-dried whole milk. Both milks have essentially the same flavor characteristics when fresh and tallow in storage. Also, freeze-drying was found to be the preservation method of choice because complete pasteurization would cause denaturation of valuable antibodies and loss of some nutrients. Obviously the cost of production is very high and distribution is quite restricted. Freeze-drying yoghurt may help maintain a sufficient quantity of viable probiotics [22]. Previous research has found that certain strains of probiotics are better able to survive the freeze-drying process [22]. The freeze-drying yoghurt also preserves the yoghurt in a high-quality shelf-stable powder form [23]. It would be beneficial if the freeze-drying process to foods is most important appears to be for meats such as beef, pork, chicken and fish. The second most interesting commodity group is fruits and vegetables. The functional properties of the freeze-dried milk are not as desirable as those of spray-dried milk [21]. Found that overall flavor and storage characteristics of freeze-dried whole milk are essentially the same as spray-dried whole milk. Both milks have essentially the same flavor characteristics when fresh and tallow in storage. Also, freeze-drying was found to be the preservation method of choice because complete pasteurization would cause denaturation of valuable antibodies and loss of some nutrients. Obviously the cost of production is very high and distribution is quite restricted. Freeze-drying yoghurt may help maintain a sufficient quantity of viable probiotics [22]. Previous research has found that certain strains of probiotics are better able to survive the freeze-drying process [22]. The freeze-drying yoghurt also preserves the yoghurt in a high-quality shelf-stable powder form [23]. It would be beneficial if the yoghurt were concentrated before drying to increase its total solids, which improves the efficiency of the drying process [23]. There are no previous studies have been conducted on the preservation of tofu, pudding and baked sweet potato by freeze-drying.
Conclusion

Freeze-drying is suitable for the reliable preservation of a wide variety of heat-sensitive products like fruits, tofu, yoghurt, milk and tofu but not suitable for pudding. The most important in this process are time, temperature and pressure. If they are well defined they may indeed affect the quality of the final product. An optimal drying system for the preservation of quality which is cost effective eliminates or reduces the exposure to light oxygen and shortens the drying time thus causing minimal damage to the product. Pre-treatment is very important to prevent browning reactions and also can limit the process time of freeze-drying. The structural, physical, functional and nutraceutical effects of freeze-drying produce are dependent on intrinsic factors that are inherent to the samples and to extrinsic factors that are inherent to the process. Freeze-drying is an ideal method for heat sensitive fruits that require special care during processing. In many fruits, properties such as shape, dimension, appearance, flavor color, texture and nutraceutical ingredients are retained after freeze-drying, adding value of approximately 120%. Unfortunately, high porosity of dried foods has a negative effect on storage stability. Therefore, the foods need to be stored in a hermetic package.

Reference