DETERMINATION OF CHEMICAL AND PHYSICAL CHARACTERISTIC OF WHIPPING CREAM PREMIX DURING STORAGE AND PREDICTING ITS SHELF LIFE USING ACCELERATED SHELF LIFE TEST

BACHELOR THESIS

Submitted to the Faculty of Agricultural Technology in partial fulfillment of the requirements for obtaining Bachelor Degree

By:
MARIA ROSALIA KUSUMANINGTYAS
09.70.0055

DEPARTMENT OF FOOD TECHNOLOGY
FACULTY OF AGRICULTURAL TECHNOLOGY
SOEGIJAPRANATA CATHOLIC UNIVERSITY
SEMARANG
2013
DETERMINATION OF CHEMICAL AND PHYSICAL CHARACTERISTIC OF WHIPPING CREAM PREMIX DURING STORAGE AND PREDICTING ITS SHELF LIFE USING ACCELERATED SHELF LIFE TEST

PENENTUAN KARAKTERISTIK KIMIA DAN FISIK PREMIKS WHIPPING CREAM SELAMA PENYIMPANAN SERTA PENENTUAN UMUR SIMPANNYA DENGAN MENGGUNAKAN METODE ACCELERATED SHELF LIFE TEST

By:
MARIA ROSALIA KUSUMANINGTYAS
NIM: 09.70.0055
Department: Food Technology

This thesis has been approved and defended in front of the examination committee at October 23th, 2013

Semarang, October 30th, 2013
Faculty of Agricultural Technology,
Soegijapranata Catholic University

Supervisor I,
Dr. Ir. B. Soedarini, MP.

Dean,
Dr. V. Kristina Ananingsih S.TP., MSc.

Supervisor II,
Ita Sulistyawati, STP, M.Sc.
SUMMARY

Premix product is a ready-made flour processed food contained the ingredients and some additives that are stable in the mixture which still need some additional minimum such as; egg, water and butter. Whipping cream premix is a powder product which is strongly influenced by environmental temperature. The main objective of this study is to determine chemical and physical characteristics of whipping cream premix. Chemical analyses consist of moisture content and water activity variables, while physical analyses consist of overrun and stiffness variables, also observation on decoration properties. The second objective of this study is to determine the whipping cream premix shelf-life based on its chemical and physical characteristics. The whipping cream premix shelf-life measured using Accelerated Shelf Life Test (ASLT) Arrhenius Model, with three different extreme temperatures, i.e. 21°C, 27°C and 37°C. The result shows that water activity was supposed as the key to determine whipping cream premix shelf-life, with regression linear equation follows order 0 (y = y = -5.507x + 12.50). Based on water activity variable, the shelf-life of whipping cream premix on supermarket temperature (25°C) is 250 days.

Keywords: premix, whipping cream, ASLT Arrhenius model, water activity.
RINGKASAN

Premiks adalah jenis pangan olahan berupa bubuk siap pakai yang berisi bahan-bahan utama disertai beberapa bahan tambahan makanan. Premiks stabil dalam bentuk campuran dan untuk membuatnya menjadi produk jadi, premix hanya membutuhkan tambahan seperti telur, air dan mentega. Bentuknya yang berupa bubuk, membuat kualitas premix whipping cream sangat mudah dipengaruhi oleh kondisi suhu lingkungan. Tujuan utama dari penelitian ini adalah untuk menentukan karakteristik fisik dan kimia dari premiks whipping cream. Analisa kimia yang dilakukan berupa variabel kadar air dan aktivitas air, sedangkan analisa fisik yang dilakukan berupa variabel overrun dan stiffness serta pengamatan terhadap decoration properties. Tujuan kedua dari penelitian ini adalah untuk menentukan umur simpan premix berdasarkan karakteristik kimia dan fisiknya. Penentuan umur simpan premix whipping cream diukur dengan menggunakan Accelerate Shelf Life Test (ASLT), dengan tiga temperatur ekstrim yang berbeda yaitu 21°C, 27°C dan 37°C. Hasil dari penelitian menunjukkan bahwa variabel aktivitas air merupakan titik kontrol kritis untuk menentukan umur simpan premix whipping cream, dengan persamaan regresi linier mengikuti orde 0 (y = -5.507x + 12,50). Berdasarkan variabel aktivitas air, umur simpan premiks whipping cream pada suhu supermarket (25°C) adalah 250 hari.

Keywords: premix, whipping cream, ASLT Arrhenius model, aktivitas air.
FOREWORD

Praise to Almighty God, Jesus Christ and Mother Mary for all blessing that given to author, so the author has finished the bachelor thesis entitled “DETERMINATION OF WHIPPING CREAM PRE-MIX SHELF LIFE UNDER LOCAL TEMPERATURE USING ACCELERATE SHELF LIFE TEST (ASLT) ARRHENIUS MODEL”. The author would not be able to finish all of these tasks alone, as the guidance, support, and encouragement from great people around the author have made it possible for the author to complete this bachelor thesis. Therefore, the author would like to say special thanks to:

1. Dr. V. Kristina Ananingsih, ST., MSc., the dean of Faculty of Agricultural Technology, Soegijapranata Catholic University, whose gave author a chance to join this research.
2. Dr. Ir. Bernadeta Soedarini, M.P. and Ita Sulistyawati, STP, M.Sc., supervisors who always help and encourage Author patiently.
3. Mrs. Febriyanti as charge from Research and Development division at PT. Kievit Indonesia, who always helps and guide author very patiently.
4. Ms. Aulya, Ms. Riani, Ms. Christa, Mr. Sentot, as Research and Development division crew at PT. Kievit Indonesia, whose very friendly and help author a lot at the factory.
5. Stefan Jonathan, Samuel Eric and Wirawan Falas, my partners whose help and support each other as a team.
6. All the lecturers and staffs of Department of Food Technology, especially Prof. Dr. Y. Budi Widianarko M.Sc., Haniel Yudiar, S.TP. M.Si and Kartika Puspa Dwiana, S.TP., whose inspiring author for always give the best effort in every task.
7. Author’s parents, brothers and sister who have always been great and support every decision that the author made.
8. My best friends; Sesil, Carolina, Atha, Reta, Arin, Arni, Yenny, Edo, Yudi, Nawang, Bundi, David, Nita, Arif and many other best friends in SCU, which has always stayed together with the author to make college days become enjoyable and colorful.
9. All my friends from Youth Ministry Retreat Team, as my new family at SCU, which has given color and a lot of experience during author’s college.
10. My beloved, Alvin Ariesta who always giving love, support and spirit for author especially on the tough days.
11. All related parties who helped the author finishing this thesis.
The author realized that the writing of this report is still far from perfect and there are still many shortcomings due to the limitations of the author. However, the author hoped that this report can still be an inspiration and provide useful information for the reader.

Semarang, October, 2013

Maria Rosalia Kusumaningtyas
Author
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Literature Review</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Bakery Premix</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Whipping cream</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.1.</td>
<td>Whipped cream structure</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2.2.</td>
<td>Whipped cream quality</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.3.</td>
<td>Process affect whipped cream</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.4.</td>
<td>Whipped cream components</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2.4.1.</td>
<td>Water content</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2.4.2.</td>
<td>Fat content</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2.4.3.</td>
<td>Protein content</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2.4.4.</td>
<td>Stabilizers and Emulsifiers</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2.5.</td>
<td>Shelf Life Arrhenius model</td>
<td>10</td>
</tr>
<tr>
<td>1.3.</td>
<td>Objectives</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>MATERIALS AND METHODS</td>
<td>12</td>
</tr>
<tr>
<td>2.1.</td>
<td>Materials</td>
<td>12</td>
</tr>
<tr>
<td>2.2.</td>
<td>Methods</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Whipping Cream Production</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Experimental Design</td>
<td>14</td>
</tr>
<tr>
<td>2.2.3.</td>
<td>Chemical Analysis</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3.1.</td>
<td>Moisture Content</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3.2.</td>
<td>Water activity</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4.</td>
<td>Physical Analysis</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4.1.</td>
<td>Overrun</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4.2.</td>
<td>Stiffness</td>
<td>17</td>
</tr>
<tr>
<td>2.2.5.</td>
<td>Decoration Properties</td>
<td>17</td>
</tr>
<tr>
<td>2.2.6.</td>
<td>Data Analysis</td>
<td>17</td>
</tr>
<tr>
<td>3.</td>
<td>RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>3.1.</td>
<td>Chemical Analysis</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Moisture Content</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Water Activity</td>
<td>21</td>
</tr>
<tr>
<td>3.2.</td>
<td>Physical Analysis</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Overrun 1</td>
<td>23</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Overrun 2</td>
<td>25</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Stiffness 1</td>
<td>27</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>Stiffness 2</td>
<td>29</td>
</tr>
<tr>
<td>3.3.</td>
<td>Decoration Properties</td>
<td>32</td>
</tr>
<tr>
<td>4.</td>
<td>DISCUSSIONS</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 Nutrition Content of Whipping Cream ... 7
Table 2 Initial and critical quality of samples .. 16
Table 3 The moisture content of premix powder during storage (1) 18
Table 4 The moisture content of premix powder during storage (2) 18
Table 5 Linear regression equation of order 0 and order 1 based on moisture content variable .. 19
Table 6 The value of k and $\ln k$ of whipping cream premix based on moisture content variable .. 20
Table 7 The water activity of whipping cream premix powder during storage (1) 21
Table 8 The water activity of whipping cream premix powder during storage (2) 21
Table 9 Linear regression equation of order 0 and order 1 based on water activity variable ... 22
Table 10 The value of k and $\ln k$ of whipping cream premix based on water activity variable .. 22
Table 11 The Overrun 1 of whipping cream premix powder during storage (1) 24
Table 12 The Overrun 1 of whipping cream premix powder during storage (2) 24
Table 13 Linear regression equation of order 0 and order 1 based on overrun 1 variable 25
Table 14 The Overrun 2 of whipping cream premix powder during storage (1) 26
Table 15 The Overrun 2 of whipping cream premix powder during storage (2) 26
Table 16 Linear regression equation of order 0 and order 1 based on overrun 2 variable 27
Table 17 The Stiffness 1 of whipping cream premix powder during storage (1) 28
Table 18 The Stiffness 1 of whipping cream premix powder during storage (2) 28
Table 19 Linear regression equation of order 0 and order 1 based on stiffness 1 variable ... 29
Table 20 The Stiffness 2 of whipping cream premix powder during storage (1) 30
Table 21 The Stiffness 2 of whipping cream premix powder during storage (2) 30
Table 22 Linear regression equation of order 0 and order 1 based on stiffness 2 variable ... 31
Table 23 Shelf-life estimation of whipping cream premix .. 32
Table 24 Correlation between water activities with overrun 1/ overrun 2/ stiffness 1/ stiffness 2 .. 32
Table 25 Decoration Properties of Whipping Cream ... 33
LIST OF FIGURES

Figure 1 Structure of Whipped Cream at the beginning of whip process 4
Figure 2 Structure of whipped cream as determined by scanning electron microscopy 5
Figure 3 Processes occurring during whipping of cream .. 6
Figure 4 Influence of lipid content of the cream on the whipping time (●), stiffness (○), and overrun (●) of the whipped cream ... 8
Figure 5 Properties of whipped cream. From left to right: whipping time (minutes), overrun (%), firmness, leakage of liquid (ml) as a function of fat content for conventional whipping cream (____) and for a cream with surfactants (----) ... 8
Figure 6 Flowchart of whipping cream premix production .. 12
Figure 7 Flow diagram of whipping cream premix production .. 13
Figure 8 Experimental design of shelf life test ... 14
Figure 9 The changes of moisture content during storage ... 19
Figure 10 Relationship between temperature storage with ln k from moisture content of whipping cream premix ... 20
Figure 11 The changes of water activity during storage .. 22
Figure 12 Relationship between temperature storage with ln k from water activity of whipping cream premix .. 23
Figure 13 The changes of overrun 1 during storage .. 25
Figure 14 The changes of overrun 2 during storage .. 27
Figure 15 The changes of stiffness 1 during storage .. 29
Figure 16 The changes of stiffness 2 during storage .. 31
Figure 17 Example of cracking point at (A) 21°C Treatment, Day 43; (B) 27°C Treatment, Day 37; (C) 37°C Treatment, Day 25; (C) 37°C Treatment, Day 49 ... 36
Figure 18 The linear equation of whipping cream premix during storage based on moisture content variable at (A) Order 0 Temp. 21°C, (B) Order 1 Temp. 21°C, (C) Order 0 Temp. 27°C, (D) Order 1 Temp. 27°C, (E) Order 0 Temp. 37°C, (F) Order 1 Temp. 37°C .. 46
Figure 19 The linear equation of whipping cream premix during storage based on water activity variable at (A) Order 0 Temp. 21°C, (B) Order 1 Temp. 21°C, (C) Order 0 Temp. 27°C, (D) Order 1 Temp. 27°C, (E) Order 0 Temp. 37°C, (F) Order 1 Temp. 37°C .. 47
Figure 20 The linear equation of whipping cream premix during storage based on overrun 1 variable at (A) Order 0 Temp. 21°C, (B) Order 1 Temp. 21°C, (C) Order 0 Temp. 27°C, (D) Order 1 Temp. 27°C, (E) Order 0 Temp. 37°C, (F) Order 1 Temp. 37°C .. 48
Figure 21 The linear equation of whipping cream premix during storage based on overrun 2 at (A) Order 0 Temp. 21°C, (B) Order 1 Temp. 21°C, (C) Order 0 Temp. 27°C, (D) Order 1 Temp. 27°C, (E) Order 0 Temp. 37°C, (F) Order 1 Temp. 37°C 49
Figure 22 The linear equation of whipping cream premix during storage based on stiffness 1 variable at (A) Order 0 Temp. 21°C, (B) Order 1 Temp. 21°C, (C) Order 0 Temp. 27°C, (D) Order 1 Temp. 27°C, (E) Order 0 Temp. 37°C, (F) Order 1 Temp. 37°C .. 50
Figure 23 The linear equation of whipping cream premix during storage based on stiffness 2 variable at (A) Order 0 Temp. 21°C, (B) Order 1 Temp. 21°C, (C) Order 0 Temp. 27°C, (D) Order 1 Temp. 27°C, (E) Order 0 Temp. 37°C, (F) Order 1 Temp. 37°C .. 51
Figure 24 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed on Day 1 and Day 4 77
Figure 25 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 6 days 78
Figure 26 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 79
Figure 27 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 80
Figure 28 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles.Observed in 6 days 81
Figure 29 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed on Day 0, 1, 3, 4 82
Figure 30 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 83
Figure 31 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed on Day 0, 1, 3, 4 84
Figure 32 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 85
Figure 33 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 6 days 86
Figure 34 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 87
Figure 35 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 6 days 88
Figure 36 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed on Day 0, 1, 3, 4 89
Figure 37 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 90
Figure 38 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed on Day 0, 1, 3, 4 91
Figure 39 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 92
Figure 40 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed on Day 0, 1, 3, 4 93
Figure 41 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 94
Figure 42 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 95
Figure 43 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 96
Figure 44 Photos of decoration properties changes of applied whipped cream (number of cracking and its size) from 5 different angles. Observed in 5 days 97
LIST OF APPENDICES

Appendix 7.1.	Linear equation of whipping cream premix shelf life during storage	46
Appendix 7.2.	Calculation of whipping cream premix shelf life	52
Appendix 7.3.	One-way ANOVA test	53
Appendix 7.4.	Normality data test	67
Appendix 7.5.	Correlation test	68
Appendix 7.6.	Overrun table	69
Appendix 7.7.	Decoration properties photos	73