
CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Implementation

The data structure in this project uses 2D arrays, 2D arrays have

advantages such as easy access, can store many elements and low memory usage.

to divide the work into 2 here used extends Thread in Java programming, Thread

makes it easy for programmers to process data with constructor data will be

directly processed by Threads.

10. public class Perkalian extends Thread{
11. int Matrix1[][],Matrix2[][],MatrixHasil[][];
12. int nomer;
13. int size;
14. int cols;
15. public Perkalian(int Matrix1[][],int Matrix2[][],int

MatrixHasil[][],int nomer) {
16. System.out.println("THREAD NOMER "+nomer);
17. this.Matrix1= Matrix1;
18. this.Matrix2= Matrix2;
19. this.MatrixHasil= MatrixHasil;
20. this.nomer= nomer;
21. }

Here is the source code to complete the matrix multiplication in the CPU.

The run function will run every time the thread is in the call, the calculation starts

from making the loop i as the line, the line will increase according to the number

of threads (2 threads), loop j as column and loop k as help. each calculation needs

to be saved to a temp (temp) variable and terminated by replacing the index

calculation with temporary variable (temp).

1. public void run() {
2.
3. for(int i=nomer;i<Matrix1.length; i=i+2)
4. {
5. for(int j = 0;j<Matrix2[0].length;j++)
6. {
7. int temp=0;
8. for(int k=0;k<Matrix1[0].length;k++)
9. {
10. temp = temp+(Matrix1[j][k] * Matrix2[k[i]);

12

http://code-industry.net/

13

11. }
12. MatrixHasil[j][i]=temp;
13. }
14. }
15. }

The following is the source code to complete the additional matrix on the

CPU. Start by creating a run function that will run every time a thread is called. in

line 2 is a loop as a line that will increase as many threads as it is in line 4 ie loop

as column and at line 6 is a calculation where the result of matrix index is

generated from index matrix calculation 1 summed with matrix 2.

1. public void run() {
2. for(int i=nomer;i<Matrix1.length; i=i+2)
3. {
4. for(int j = 0;j<Matrix1[0].length;j++)
5. {
6. MatrixHasil[i][j]=Matrix1[i][j]+Matrix2[i][j];
7. }
8. }

To horizontal flipping which horizontally requires a temporary variable to

store the matrix value for swapping. This algorithm performs a loop until all the

data in the line and each iterate will increase with the number of threads in this

experiment the author uses 2 threads then the second loop needs to help restrict

the data to swap if not using this swap it will cause the data Failure will return. to

the old place Temp will store the point of the matrix row and the column for the

swap then the row and column matrices will change to row matrices (i) and

columns to max column length then minus indexes in j and - 1. (minus one

because array starts from zero not t one) the last step change the row matrix (i)

and column to max column length then minus index at j and - 1. to temp (temp

already save first array).

1. public void run() {
2. int temp;
3. for(int i=nomer;i<Matrix1.length; i=i+2)
4. {
5. for(int j = 0;j<Math.floor(Matrix1[0].length/2);j++)
6. {
7. temp = Matrix1[i][j];
8. Matrix1[i][j] = Matrix1[i][Matrix1[0].length-j-1];
9. Matrix1[i][Matrix1[0].length-j-1]=temp;
10. }

http://code-industry.net/

14

11.
12. }

In a vertical transform it needs a temporary variable to store the value matrix

for swapping. This algorithm loops from the number of threads to the row

divided by 2 and each iterate will add the number of threads, the second loop

will help the swapping column. Temp will store row matrix and iterate columns

then row matrix and column iterate will swap to matrix row length minus index

i and -1 (-1 because array start from zero) and column j and last step matrix

row length is reduced by index i and - 1 and column j will be swapped to temp.

1. public void run() {
2. int temp;
3. for(int i=nomer;i<Math.floor(Matrix1.length/2); i=i+2)
4. {
5. for(int j = 0;j<Matrix1[0].length;j++)
6. {
7. temp = Matrix1[i][j];
8. Matrix1[i][j] = Matrix1[Matrix1.length-i-1][j];
9. Matrix1[Matrix1.length-i-1][j]=temp;
10. }
11.
12. }
13. }

Below is the GPU CUDA programming the source code to calculate the

matrix multiplication by using 2 threads. In line 1 and 2 is the preparation of

blocks to complete the matrix multiplication. In the first line set the number of

threads this source code works with array 1d (x), 2d (x, y) and 3d (x, y, z). In this

project using 2d arrays then the number of blocks will be calculated by the

number of N (N is the length of the array) divided by the threadPerblock index x

and the y index and the number of blocks and threads used for kernel lauch in

CUDA on line 3.

Cuda has 3 functions that can be used like device, host and global function

but in this project function in CUDA will be written globally on line 5. this

function will be executed N times in parallel by different CUDA N thread.

http://code-industry.net/

15

For indexing in CUDA using int i = blockIdx.x * blockDim.x +

threadIdx.x; This command will count all the blocks multiplied by dim with

threads. Then create a temporary variable in line 11. on line 14 to calculate the

multiplication requires the help of the loop because the kernel executes the

command as much as N time kernel and can not use double loop as in CPU usage.

line 16 temp will be added by loop helper. And on line 18 save the result to the

dev c array to send back to the host.

1. dim3 threadPerBlock(2,2);
2. dim3 numBlocks(N/threadPerBlock.x,N/threadPerBlock.y);
3. Matrix_Multi<<<numBlocks,threadPerBlock>>>(dev_a,dev_b,dev_c);

// kernel program
4.
5. __global__ void Matrix_Multi (int dev_a[][N] , int dev_b[]

[N] , int dev_c[][N])
6. {
7. //Get the id of thread within a block
8. int i = blockIdx.x * blockDim.x + threadIdx.x;
9. int j = blockIdx.y * blockDim.y + threadIdx.y;
10.
11. int hasil=0;
12. int e =0;
13. if(i<N && j <N)
14. { for(e=0;e<N;e++)
15. {
16. hasil=hasil+ (dev_a[i][e]*dev_b[e][j]);
17. }
18. dev_c[i][j]=hasil;
19. }
20. }

The following is the source code in CUDA to do the addition matrix. To do

the addition does not require a loop because CUDA will run the kernel as much as

n time in parallel by different CUDA threads. so we only need to limit the

execution of N times (N is the length of the array) by using if on line 5 and line 6

the calculation by using indexing i and j (details above) and the result of addition

is saved to dev c to be returned to host (CPU).

1. __global__ void Matrix_Add (int dev_a[][N] , int dev_b[][N] ,
int dev_c[][N])

2. {
3. int i = blockIdx.x * blockDim.x + threadIdx.x;
4. int j = blockIdx.y * blockDim.y + threadIdx.y;
5. if (i < N && j <N)
6. dev_c[i][j]=dev_a[i][j] + dev_b[j][j];

http://code-industry.net/

16

7. }

This source code is a vertical flip matrix using CUDA programming, the

CUDA indexing details exist in the multiplication of the matrix source code. the

program will take the function parameter when called and stored in line 6. Then

on line 7 is the temporary variable to save swapping, at line 10 temp variable will

be set to save the array value of dev_a row and column, then line 11 line of array

dev_a and column will changes to the dev_a array of the max-i-1 index row

(minus 1 because the array starts from zero) and the last column j on line 12 of the

dev array of the max-i-1 row index (minus 1 because the array starts from zero)

and the column j changed to temp variable.

1. __global__ void Matrix_Flip (int dev_a[][N] , int size)
2. {
3. //Get the id of thread within a block
4. int i = blockIdx.x * blockDim.x + threadIdx.x;
5. int j = blockIdx.y * blockDim.y + threadIdx.y;
6. int total=size;
7. int hasil=0;
8. if(i<N && j <N)
9. {
10. hasil=dev_a[i][j];
11. dev_a[i][j] = dev_a[(total-i-1)][j];
12. dev_a[(total-i-1)][j]=hasil;
13. }
14. }

This source code is a Horizontal flip matrix using CUDA programming,

CUDA indexing details exist in the multiplication of the matrix source code. the

program will take the function parameter when called and stored in line 6. Then

on line 7 is temporary variable to save swapping, at line 10 temp variable will be

set to save the array value of dev_a row and column, then at line 11 the array

dev_a row and column will switch to the dev array of an index row i and the max-

j-1 column (minus 1 because the array starts from zero) then on row 12 the array

dev i index row and max-j-1 column (minus 1 because the array start from zero)

swap to the temp variable.

1. __global__ void Matrix_Flip (int dev_a[][N] , int size)
2. {
3. //Get the id of thread within a block
4. int i = blockIdx.x * blockDim.x + threadIdx.x;
5. int j = blockIdx.y * blockDim.y + threadIdx.y;

http://code-industry.net/

17

6. int total=size;
7. int hasil=0;
8. if(i<N && j <N)
9. {
10. hasil=dev_a[i][j];
11. dev_a[i][j] = dev_a[i][(total-j-1)];
12. dev_a[i][(total-j-1)]=hasil;
13. }
14. }

5.2 Testing

 The result of matrix dimension effect with time calculation on CPU and GPU

(on CPU will be tested on different processing unit).

From the matrix multiplication graph above, computation time has

increased significantly when data elements of more than 20 million of CPU Dual

Core E2140. This makes the Core i5 4460 CPU better than the Dual Core E2140

CPU because the Dual Core CPU has a lower clock than the Core i5 4460 so the

graph looks like it's linear.

250000 1000000 25000000 100000000
1

10

100

1000

10000

100000

1000000

10000000

100000000

Matrix Multiplication

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

Ti
m

e
 in

 m
s

Illustration 5.1: Time Computation Matrix Multiplication

http://code-industry.net/

18

According to the above graphic addition matrix has a computational time

lower on the amount of data below 1 million and increased in the number 10

million - 100 million data but no significant increase for the Core i5 4460

processor.

250000 1000000 25000000 100000000
0

500

1000

1500

2000

2500

Matrix Addition
Dual Core

GPU-Seq-
DualCore

GPU-
Async-
DualCore

I5 4460

GPU-SEQ-
I5

GPU-
Async-I5

Numbers of element

Ti
m

e
 in

 m
s

Illustration 5.2: Time Computation Matrix Addition

Illustration 5.3: Time Computation Vertical Flip Matrix

http://code-industry.net/

19

Based on the graph above Horizontal flip matrix and Vertical flip matrix

increase the calculation time straight upward to form linear graphic.

250000 1000000 25000000 100000000
0

50

100

150

200

250

PU Usage Matrix Multiplication

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.5: Matrix Multiplication PU usage

250000 1000000 25000000 100000000
0

200

400

600

800

1000

1200

Horizontal Flip Matrix

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Number of elements

Ti
m

e
s

in
 m

s

Illustration 5.4: Time Computation Horizonatal Flip Matrix

http://code-industry.net/

20

250000 1000000 25000000 100000000
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

PU Usage Matrix Addition

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.6: Matrix Addition PU usage

250000 1000000 25000000 100000000
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

PU Usage Horizontal Flip Matrix

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.7: Horizontal Flip Matrix PU usage

http://code-industry.net/

21

 Effect of matrix dimension by using processing unit on CPU and GPU. (in

%) on all matrix operations in which the use of PU (Processing Unit) is tended to

experience ups and downs are almost the same so as to make graphics look curved

/ exponential.

250000 1000000 25000000 100000000
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Memory Usage Matrix Multiplication

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.9: Matrix Multiplication Memory Usage

250000 1000000 25000000 100000000
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

PU Usage Vertical Flip Matrix

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.8: Vertical Flip Matrix PU usage

http://code-industry.net/

22

250000 1000000 25000000 100000000
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Memory Usage Matrix Addition

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.10: Matrix Addition Memory Usage

250000 1000000 25000000 100000000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Memory Usage Horizontal Flip Matrix

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.11: Horizontal Flip Matrix Memory Usage

http://code-industry.net/

23

 Effect of matrix dimension with memory usage on CPU and GPU. (In%)

of the graphics the results obtained above indicate that the process of increasing

memory usage on CPU and GPU occurs in a linear fashion where the use of large

data takes up more memory.

250000 1000000 25000000 100000000
0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%

Memory Usage Matrix Flip Vertical

Dual Core E2140

GPU-Seq-Dualcore

GPU-Async-DualCore

I5 4460

GPU-Seq-I5

GPU-Async-I5

Numbers of element

U
sa

g
e

 (
%

)

Illustration 5.12: Memory Usage Vertical Flip Matrix

250000 1000000 25000000 100000000
1

10

100

1000

10000

100000

1000000

Comparing Matrix Operation

(Nvidia 1050 Ti and Dual Core E2110)

Multiplication

Addition

Flip Horizontal

Flip Vertical

Numbers of element

Ti
m

e
 in

 m
s

Illustration 5.13: Comparing Matrix Operation Dual Core

http://code-industry.net/

24

Illustration 5.14: Comparing Matrix Operation Core I5

Time effects on the number of matrix elements in performing different

tasks on the GPU. From the above results the time used for Core i5 4460 is faster

than Dual Core E2110.

250000 1000000 25000000 100000000
1

10

100

1000

10000

100000

1000000

Comparing Matrix Operation
Nvidia 1050 TI and I5 4460

Multiplication

Addition

Flip Horizontal

Flip Vertical

Numbers of element

Ti
m

e
 in

 m
s

http://code-industry.net/

	Cover
	APPROVAL AND RATIFICATION PAGE
	STATEMENT OF ORIGINALITY
	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	ILLUSTRATION INDEX
	INDEX OF TABLES
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Scope
	1.3 Objective

	CHAPTER 2 Literature Study
	CHAPTER 3 Research Methodology
	CHAPTER 4 Design Analysis
	4.1 General design software
	4.2 Testing Scenario.

	CHAPTER 5 Implementation and Testing
	5.1 Implementation
	5.2 Testing

	CHAPTER 6 Conclusion
	References

