PROJECT REPORT

BUTTERFLY ANIMATION USING JAVA

FERNANDO SETIAWAN HARTONO
13.02.0013

Faculty of Computer Science
Soegijapranata Catholic University
2018
This project report has been approved and ratified by the Faculty of Computer Science on January 22, 2018.

With approval,

Supervisor,

Suyanto EA, Ir., M.Sc

Examiners,

1.)
Hironimus Leong, S.Kom., M.Kom
NPP: 058.1.2007.273

2.)
Rosita Herawati, ST., MIT
NPP: 058.1.2004.263

3.)
Shinta Estri Wahyuningsrum, S.Si., M.Cs
NPP: 058.1.2007.272

Dean of Faculty of Computer Science,

Erdhi Widyanto Nugroho, ST., MT
NPP: 058.1.2002.254
STATEMENT OF ORIGINALITY

I, the undersigned:

Name : FERNANDO SETIAWAN HARTONO
ID : 13.02.0013

Certify that this project was made by myself and not copy or plagiarize from other people, except that in writing expressed to the other article. If it is proven that this project was plagiarizes or copy the other, I am ready to accept a sanction.

Semarang, January 22, 2018

FERNANDO SETIAWAN HARTONO
13.02.0013
ABSTRACT

This project makes animated butterflies with java. The project combines a line to create a butterfly image pattern. Then it moves the butterfly image by creating a new butterfly image at a new position and repaint the Graphics Panel.

The steps of creating animations with java are: firstly, provides a component needed to draw 2D animations. Secondly, we uses Graphics2D and GeneralPath to create a butterfly image pattern. This project uses a random function to set the direction of movement.

In the project there are three kinds of directives that can be added and developed.

Keyword: Java, Direction, Graphics2D.
PREFACE

The background of this program discusses the creation of animated images, control the direction of movement, add three different movements. The literature study contains a comparative program I created with a journal or article. This research method describes the steps of making the program from start to finish. This analysis contains an explanation of the programming and the design contains an overview of the program. Implementation contains the worker created, the test contains the results of the program experiment. The conclusion of the program contains the end result of the program, its advantages and disadvantages.
TABLE OF CONTENTS

Cover ...i
APPROVAL AND RATIFICATION PAGE .. ii
STATEMENT OF ORIGINALITY ... iii
ABSTRACT ... iv
PREFACE.. v
TABLE OF CONTENTS .. vi
ILLUSTRATION INDEX .. vii

CHAPTER 1 INTRODUCTION .. 1
 1.1 Background .. 1
 1.2 Scope ... 1
 1.3 Objective .. 1

CHAPTER 2 LITERATURE STUDY ... 2

CHAPTER 3 RESEARCH METHODOLOGY ... 3

CHAPTER 4 ANALYSIS AND DESIGN ... 4
 4.1 Analysis ... 4
 4.2 Design ... 4

CHAPTER 5 IMPLEMENTATION AND TESTING ... 6
 5.1 Implementation .. 6
 5.2 Testing .. 9

CHAPTER 6 CONCLUSION .. 13

REFERENCES ... 13

APPENDIX ... A
ILLUSTRATION INDEX

Illustration 4.1: Flow chart the direction of movement	6
Illustration 5.1: The constructor of the class GeraKupu	7
Illustration 5.2: Control the direction of movement	7
Illustration 5.3: Function random	7
Illustration 5.4: Running thread	8
Illustration 5.5: Create a kupuku object	8
Illustration 5.6: Start Thread	9
Illustration 5.7: Create a component	9
Illustration 5.8: Draw 2D animation	9
Illustration 5.9: DemoKupu class	10
Illustration 5.10: Displays terminal	11
Illustration 5.11: Result value 2	11
Illustration 5.12: Result value 1	12
Illustration 5.13: Result value 3 part 1	12
Illustration 5.14: Result value 3 part 2	13