7. LAMPIRAN

7.1. Uji Normalitas dan Uji Beda Nyata

Asam Fitat pada Tepung dan Ekstrak

<table>
<thead>
<tr>
<th>Tests of Normality</th>
<th>Kolmogorov-Smirnov(a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>TPG.AF</td>
<td>.140</td>
<td>30</td>
</tr>
</tbody>
</table>

a Lilliefors Significance Correction

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>TPG.AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squares</td>
<td>df</td>
</tr>
<tr>
<td>Between Groups</td>
<td>171.570</td>
</tr>
<tr>
<td>Within Groups</td>
<td>9.081</td>
</tr>
<tr>
<td>Total</td>
<td>180.651</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tukey HSD</th>
<th>TPG.AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERLUKUAN</td>
<td>N</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
</tr>
<tr>
<td>7.6658</td>
<td></td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size = 6.000.

<table>
<thead>
<tr>
<th>Tests of Normality</th>
<th>Kolmogorov-Smirnov(a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>EKS.AF</td>
<td>.119</td>
<td>30</td>
</tr>
</tbody>
</table>

a This is a lower bound of the true significance.

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>EKS.AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squares</td>
<td>df</td>
</tr>
<tr>
<td>Between Groups</td>
<td>198.813</td>
</tr>
<tr>
<td>Within Groups</td>
<td>6.419</td>
</tr>
<tr>
<td>Total</td>
<td>205.232</td>
</tr>
</tbody>
</table>
EKS.AF

Tukey HSD

<table>
<thead>
<tr>
<th>PERLKUAN</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 jam</td>
<td>6</td>
<td>1.9350 3.7667 5.3625 7.4458 9.1912</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>1.9350 3.7667 5.3625 7.4458 9.1912</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>1.9350 3.7667 5.3625 7.4458 9.1912</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>1.9350 3.7667 5.3625 7.4458 9.1912</td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
<td>1.9350 3.7667 5.3625 7.4458 9.1912</td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>1.000 1.000 1.000 1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 6.00.

Descriptives

<table>
<thead>
<tr>
<th>TPG.AF</th>
<th>EKS.AF</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>tanpa perendaman</td>
<td>tanpa perendaman</td>
<td>6</td>
<td>7.6658</td>
<td>.35496</td>
<td>.14491</td>
<td>7.2933</td>
<td>8.0383</td>
<td>7.32</td>
<td>8.26</td>
</tr>
<tr>
<td>12 jam</td>
<td>12 jam</td>
<td>6</td>
<td>6.0857</td>
<td>.95711</td>
<td>.39074</td>
<td>5.0812</td>
<td>7.0901</td>
<td>4.82</td>
<td>6.99</td>
</tr>
<tr>
<td>24 jam</td>
<td>24 jam</td>
<td>6</td>
<td>4.3718</td>
<td>.56103</td>
<td>.22904</td>
<td>3.7831</td>
<td>4.9606</td>
<td>3.50</td>
<td>4.91</td>
</tr>
<tr>
<td>36 jam</td>
<td>36 jam</td>
<td>6</td>
<td>2.4460</td>
<td>.59053</td>
<td>.24108</td>
<td>1.8263</td>
<td>3.0657</td>
<td>1.47</td>
<td>2.98</td>
</tr>
<tr>
<td>48 jam</td>
<td>48 jam</td>
<td>6</td>
<td>1.0385</td>
<td>.33276</td>
<td>.13585</td>
<td>.6893</td>
<td>1.3877</td>
<td>.62</td>
<td>1.47</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>30</td>
<td>4.3216</td>
<td>2.49587</td>
<td>.45588</td>
<td>3.3896</td>
<td>5.2535</td>
<td>.62</td>
<td>8.26</td>
</tr>
</tbody>
</table>

![Image of Universitas Riau Logo](Perpustakaan Unika.png)
Aktivitas Antioksidan 500 ppm pada Tepung

Tests of Normality

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Kolmogorov-Smirnov(a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Sig.</td>
<td>df</td>
</tr>
<tr>
<td>TPG. 500</td>
<td>.159 30</td>
<td>.051 30</td>
</tr>
</tbody>
</table>

a Lilliefors Significance Correction

ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>.698 4</td>
<td>.175 27.045</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Within Groups</td>
<td>.008 25</td>
<td>.000 1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.706 29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tukey HSD

<table>
<thead>
<tr>
<th>PERKUAN</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 jam</td>
<td>6</td>
<td>1.0719</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>1.059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>1.2191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>1.3517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
<td>1.4796</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size = 6.000.

Aktivitas Antioksidan 250 ppm pada Tepung

Tests of Normality

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Kolmogorov-Smirnov(a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Sig.</td>
<td>df</td>
</tr>
<tr>
<td>TPG.250</td>
<td>.120 30</td>
<td>.200(*)</td>
</tr>
</tbody>
</table>

* This is a lower bound of the true significance.
a Lilliefors Significance Correction

ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>.214 4</td>
<td>.054 27.045</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Within Groups</td>
<td>.050 25</td>
<td>.002 1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.264 29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aktivitas Antioksidan 500 ppm pada Ekstrak

Tests of Normality

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov(a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>EKS.500</td>
<td>.154</td>
<td>30</td>
</tr>
</tbody>
</table>

a Lilliefors Significance Correction

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>.233</td>
<td>4</td>
<td>.058</td>
<td>26.234</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>.056</td>
<td>25</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.288</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tukey HSD

<table>
<thead>
<tr>
<th>PERLUKUAN</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
<td>.4678</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>.5581</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>.5632</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>.6462</td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size = 6.000.
Aktivitas Antioksidan 250 ppm pada Ekstrak

Tests of Normality

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov(a)</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>EKS.250</td>
<td>.153</td>
<td>30</td>
</tr>
</tbody>
</table>

\(a\) Lilliefors Significance Correction

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>.041</td>
<td>4</td>
<td>.010</td>
<td>47.258</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>.005</td>
<td>25</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.046</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tukey HSD

<table>
<thead>
<tr>
<th>PERLUKUAN</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
<td>.2725</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>.2786</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>.3248</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>1.000</td>
<td>.880</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
\(a\) Uses Harmonic Mean Sample Size = 6.000.
Oneway

Descriptives

<table>
<thead>
<tr>
<th>Time</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPG.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanpa perendaman</td>
<td>6</td>
<td>6.6053</td>
<td>.09224</td>
<td>.03766</td>
<td>6.5085</td>
<td>6.7021</td>
<td>6.51</td>
<td>6.73</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>5.0220</td>
<td>.06989</td>
<td>.02885</td>
<td>4.9487</td>
<td>5.0953</td>
<td>4.91</td>
<td>5.10</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>3.0478</td>
<td>.07182</td>
<td>.02932</td>
<td>2.9725</td>
<td>3.1232</td>
<td>2.96</td>
<td>3.16</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>2.2020</td>
<td>.07803</td>
<td>.03185</td>
<td>2.1201</td>
<td>2.2839</td>
<td>2.11</td>
<td>2.32</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
<td>1.8188</td>
<td>.05696</td>
<td>.02325</td>
<td>1.7561</td>
<td>1.8756</td>
<td>1.73</td>
<td>1.91</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>3.7386</td>
<td>1.84338</td>
<td>1.84338</td>
<td>3.0503</td>
<td>4.4269</td>
<td>1.73</td>
<td>6.73</td>
</tr>
<tr>
<td>TPG.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanpa perendaman</td>
<td>6</td>
<td>5.0878</td>
<td>.18788</td>
<td>.07670</td>
<td>4.8907</td>
<td>5.2850</td>
<td>4.81</td>
<td>5.33</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>4.2217</td>
<td>.07144</td>
<td>.02916</td>
<td>4.1467</td>
<td>4.2966</td>
<td>4.13</td>
<td>4.30</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>1.8243</td>
<td>.08748</td>
<td>.03572</td>
<td>1.7325</td>
<td>1.9161</td>
<td>1.71</td>
<td>1.90</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>1.4285</td>
<td>.06742</td>
<td>.02752</td>
<td>1.3577</td>
<td>1.4993</td>
<td>1.32</td>
<td>1.51</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
<td>.4770</td>
<td>.04555</td>
<td>.01859</td>
<td>.4292</td>
<td>.5248</td>
<td>.41</td>
<td>.52</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>2.6079</td>
<td>1.78184</td>
<td>1.32532</td>
<td>1.9425</td>
<td>3.2732</td>
<td>.41</td>
<td>5.33</td>
</tr>
</tbody>
</table>
Descriptives

EKS.500

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error</td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
<td>14.3862</td>
<td>.72987</td>
<td>.29797</td>
<td>13.6202</td>
<td>15.1521</td>
<td>13.37</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>12.8548</td>
<td>.53081</td>
<td>.21670</td>
<td>12.2978</td>
<td>13.4119</td>
<td>12.08</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>8.1710</td>
<td>.91934</td>
<td>.37532</td>
<td>7.2062</td>
<td>9.1358</td>
<td>6.76</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>5.0893</td>
<td>.45662</td>
<td>.18641</td>
<td>4.6101</td>
<td>5.5685</td>
<td>4.69</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
<td>3.7952</td>
<td>.49058</td>
<td>.20028</td>
<td>3.2803</td>
<td>4.3100</td>
<td>3.05</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>8.8593</td>
<td>4.28147</td>
<td>.78169</td>
<td>7.2606</td>
<td>10.4580</td>
<td>3.05</td>
</tr>
</tbody>
</table>

EKS.250

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error</td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td>tanpa perendaman</td>
<td>6</td>
<td>10.1225</td>
<td>.68042</td>
<td>.27778</td>
<td>9.4084</td>
<td>10.8366</td>
<td>9.21</td>
</tr>
<tr>
<td>12 jam</td>
<td>6</td>
<td>9.3887</td>
<td>.66264</td>
<td>.27064</td>
<td>8.6930</td>
<td>10.0844</td>
<td>8.30</td>
</tr>
<tr>
<td>24 jam</td>
<td>6</td>
<td>5.8238</td>
<td>.67617</td>
<td>.27605</td>
<td>5.1142</td>
<td>6.5334</td>
<td>4.91</td>
</tr>
<tr>
<td>36 jam</td>
<td>6</td>
<td>3.3932</td>
<td>.58887</td>
<td>.24040</td>
<td>2.7752</td>
<td>4.0111</td>
<td>2.36</td>
</tr>
<tr>
<td>48 jam</td>
<td>6</td>
<td>2.6220</td>
<td>.29405</td>
<td>.12005</td>
<td>2.3134</td>
<td>2.9306</td>
<td>2.06</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>6.2700</td>
<td>3.14626</td>
<td>.57443</td>
<td>5.0952</td>
<td>7.4449</td>
<td>2.06</td>
</tr>
</tbody>
</table>
7.2. Uji Regresi Nonlinear

Asam Fitat pada Tepung

All the derivatives will be calculated numerically.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residual SS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>122.0989010</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
</tr>
<tr>
<td>1.1</td>
<td>.0106395571</td>
<td>.000034095</td>
<td>-.00233482</td>
<td>-.10342163</td>
<td>7.65367143</td>
</tr>
<tr>
<td>2</td>
<td>.0106395571</td>
<td>.000034095</td>
<td>-.00233482</td>
<td>-.10342162</td>
<td>7.65367142</td>
</tr>
<tr>
<td>2.1</td>
<td>.0106395571</td>
<td>.000034095</td>
<td>-.00233482</td>
<td>-.10342162</td>
<td>7.65367142</td>
</tr>
</tbody>
</table>

Run stopped after 4 model evaluations and 2 derivative evaluations. Iterations have been stopped because the relative reduction between successive residual sums of squares is at most SCON = 1.000E-08

Nonlinear Regression Summary Statistics

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>122.08826</td>
<td>30.52207</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>.01064</td>
<td>.01064</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>5</td>
<td>122.09890</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>4</td>
<td>28.24179</td>
<td></td>
</tr>
</tbody>
</table>

R squared = 1 - Residual SS / Corrected SS = .99962

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.000034095</td>
<td>.000015730</td>
<td>-.000165777</td>
<td>.000233968</td>
</tr>
<tr>
<td>B</td>
<td>-.002334821</td>
<td>.001148647</td>
<td>-.016929764</td>
<td>.012260121</td>
</tr>
<tr>
<td>C</td>
<td>-.103421627</td>
<td>.021709797</td>
<td>-.379270752</td>
<td>.172427498</td>
</tr>
<tr>
<td>D</td>
<td>7.653671429</td>
<td>.102408805</td>
<td>6.35244189</td>
<td>8.954898668</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix of the Parameter Estimates

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0000</td>
<td>-.9860</td>
<td>.8973</td>
<td>-.3185</td>
</tr>
<tr>
<td>B</td>
<td>-.9860</td>
<td>1.0000</td>
<td>-.9553</td>
<td>.4038</td>
</tr>
<tr>
<td>C</td>
<td>.8973</td>
<td>-.9553</td>
<td>1.0000</td>
<td>-.5934</td>
</tr>
<tr>
<td>D</td>
<td>-.3185</td>
<td>.4038</td>
<td>-.5934</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Asam Fitat pada Ekstrak

All the derivatives will be calculated numerically.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residual SS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186.613680</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
</tr>
<tr>
<td>1.1</td>
<td>.0342329143</td>
<td>.000004919</td>
<td>-.00019891</td>
<td>-.15295238</td>
<td>9.21311429</td>
</tr>
<tr>
<td>2</td>
<td>.0342329143</td>
<td>.000004919</td>
<td>-.00019891</td>
<td>-.15295238</td>
<td>9.21311429</td>
</tr>
<tr>
<td>2.1</td>
<td>.0342329143</td>
<td>.000004919</td>
<td>-.00019891</td>
<td>-.15295234</td>
<td>9.21311421</td>
</tr>
</tbody>
</table>

Run stopped after 4 model evaluations and 2 derivative evaluations.
Iterations have been stopped because the relative reduction between successive residual sums of squares is at most SSCON = 1.000E-08

Nonlinear Regression Summary Statistics

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>186.57945</td>
<td>46.64486</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>.03423</td>
<td>.03423</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>5</td>
<td>186.61368</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>4</td>
<td>33.13352</td>
<td></td>
</tr>
</tbody>
</table>

R squared = 1 - Residual SS / Corrected SS = .99897

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.91898E-06</td>
<td>.000028216</td>
<td>-.000353600</td>
<td>.000363438</td>
</tr>
<tr>
<td>B</td>
<td>-.000198909</td>
<td>.002060372</td>
<td>-.026378414</td>
<td>.025980596</td>
</tr>
<tr>
<td>C</td>
<td>-.152952381</td>
<td>.038941714</td>
<td>-.647753774</td>
<td>.341849013</td>
</tr>
<tr>
<td>D</td>
<td>9.213114286</td>
<td>.183695062</td>
<td>6.879047218</td>
<td>11.547181354</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix of the Parameter Estimates

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0000</td>
<td>- .9860</td>
<td>.8973</td>
</tr>
<tr>
<td>B</td>
<td>-.9860</td>
<td>1.0000</td>
<td>-.9553</td>
</tr>
<tr>
<td>C</td>
<td>.8973</td>
<td>-.9553</td>
<td>1.0000</td>
</tr>
<tr>
<td>D</td>
<td>-.3185</td>
<td>.4038</td>
<td>-.5934</td>
</tr>
</tbody>
</table>
Aktivitas Antioksidan 500 ppm pada Tepung

All the derivatives will be calculated numerically.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residual SS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86.28347300</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
</tr>
<tr>
<td>1.1</td>
<td>.0683281286</td>
<td>.000041040</td>
<td>-.00120784</td>
<td>-.13635020</td>
<td>6.63624286</td>
</tr>
<tr>
<td>2</td>
<td>.0683281286</td>
<td>.000041040</td>
<td>-.00120784</td>
<td>-.13635018</td>
<td>6.63624283</td>
</tr>
<tr>
<td>2.1</td>
<td>.0683281286</td>
<td>.000041040</td>
<td>-.00120784</td>
<td>-.13635018</td>
<td>6.63624283</td>
</tr>
</tbody>
</table>

Run stopped after 4 model evaluations and 2 derivative evaluations. Iterations have been stopped because the relative reduction between successive residual sums of squares is at most SCON = 1.000E-08

Nonlinear Regression Summary Statistics

Dependent Variable ANT5_TPG

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>86.21514</td>
<td>21.55379</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>.06833</td>
<td>.06833</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>5</td>
<td>86.28347</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>4</td>
<td>16.39782</td>
<td></td>
</tr>
</tbody>
</table>

R squared = 1 - Residual SS / Corrected SS = .99583

Asymptotic 95 %

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.000041040</td>
<td>.000039863</td>
<td>-.000465473</td>
<td>.000547553</td>
</tr>
<tr>
<td>B</td>
<td>-.001207837</td>
<td>.002910882</td>
<td>-.038194098</td>
<td>.035778424</td>
</tr>
<tr>
<td>C</td>
<td>-.136350198</td>
<td>.055016605</td>
<td>-.835402447</td>
<td>.562702050</td>
</tr>
<tr>
<td>D</td>
<td>6.636242857</td>
<td>.259522666</td>
<td>3.338694724</td>
<td>9.933790990</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix of the Parameter Estimates

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0000</td>
<td>-.9860</td>
<td>.8973</td>
</tr>
<tr>
<td>B</td>
<td>-.9860</td>
<td>1.0000</td>
<td>-.9553</td>
</tr>
<tr>
<td>C</td>
<td>.8973</td>
<td>-.9553</td>
<td>1.0000</td>
</tr>
<tr>
<td>D</td>
<td>-.3185</td>
<td>.4038</td>
<td>-.5934</td>
</tr>
</tbody>
</table>
Aktivitas Antioksidan 500 ppm pada Ekstrak

All the derivatives will be calculated numerically.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residual SS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>479.2732080</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
</tr>
<tr>
<td>1.1</td>
<td>.2982251571</td>
<td>.000238281</td>
<td>-.01612649</td>
<td>.004425595</td>
<td>14.4512714</td>
</tr>
<tr>
<td>2</td>
<td>.2982251571</td>
<td>.000238281</td>
<td>-.01612649</td>
<td>.004425595</td>
<td>14.4512714</td>
</tr>
</tbody>
</table>

Run stopped after 3 model evaluations and 2 derivative evaluations. Iterations have been stopped because the magnitude of the largest correlation between the residuals and any derivative column is at most RCON = 1.000E-08

Nonlinear Regression Summary Statistics Dependent Variable ANT5_EKS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>478.97498</td>
<td>119.74375</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>.29823</td>
<td>.29823</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>5</td>
<td>479.27321</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>4</td>
<td>86.84608</td>
<td></td>
</tr>
</tbody>
</table>

R squared = 1 - Residual SS / Corrected SS = .99657

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.000238281</td>
<td>.000083281</td>
<td>-.000819907</td>
<td>.001296470</td>
</tr>
<tr>
<td>B</td>
<td>-.016126488</td>
<td>.006081307</td>
<td>-.093396818</td>
<td>.061143842</td>
</tr>
<tr>
<td>C</td>
<td>.004425595</td>
<td>.114938664</td>
<td>-1.456008601</td>
<td>1.464859792</td>
</tr>
<tr>
<td>D</td>
<td>14.451271429</td>
<td>.542185209</td>
<td>7.562155159</td>
<td>21.340387699</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix of the Parameter Estimates

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>-.9860</td>
<td>.8973</td>
<td>-.3185</td>
</tr>
<tr>
<td>-.9860</td>
<td>1.0000</td>
<td>-.9553</td>
<td>.4038</td>
</tr>
<tr>
<td>.8973</td>
<td>-.9553</td>
<td>1.0000</td>
<td>-.5934</td>
</tr>
<tr>
<td>-.3185</td>
<td>.4038</td>
<td>-.5934</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
Aktivitas Antioksidan 250 ppm pada Tepung

All the derivatives will be calculated numerically.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residual SS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.30957400</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
</tr>
<tr>
<td>1.1</td>
<td>.5307003571</td>
<td>.000047020</td>
<td>-.00247718</td>
<td>-.08549107</td>
<td>5.17507143</td>
</tr>
<tr>
<td>2</td>
<td>.5307003571</td>
<td>.000047020</td>
<td>-.00247718</td>
<td>-.08549107</td>
<td>5.17507143</td>
</tr>
</tbody>
</table>

Run stopped after 3 model evaluations and 2 derivative evaluations. Iterations have been stopped because the magnitude of the largest correlation between the residuals and any derivative column is at most RCON = 1.000E-08

Nonlinear Regression Summary Statistics

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>48.77887</td>
<td>12.19472</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>.53070</td>
<td>.53070</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>5</td>
<td>49.30957</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>4</td>
<td>15.30125</td>
<td></td>
</tr>
</tbody>
</table>

R squared = 1 - Residual SS / Corrected SS = .96532

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.0000047020</td>
<td>.000111096</td>
<td>-.001364593</td>
<td>.001458632</td>
</tr>
<tr>
<td>B</td>
<td>-.002477183</td>
<td>.008112401</td>
<td>-.105555008</td>
<td>.100600643</td>
</tr>
<tr>
<td>C</td>
<td>-.085491071</td>
<td>.153326997</td>
<td>-2.033695289</td>
<td>1.862713146</td>
</tr>
<tr>
<td>D</td>
<td>5.175071429</td>
<td>.723269606</td>
<td>-4.014940262</td>
<td>14.365083119</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix of the Parameter Estimates

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0000</td>
<td>-.9860</td>
<td>.8973</td>
</tr>
<tr>
<td>B</td>
<td>-.9860</td>
<td>1.0000</td>
<td>-.9553</td>
</tr>
<tr>
<td>C</td>
<td>.8973</td>
<td>-.9553</td>
<td>1.0000</td>
</tr>
<tr>
<td>D</td>
<td>-.3185</td>
<td>.4038</td>
<td>-.5934</td>
</tr>
</tbody>
</table>
Aktivitas Antioksidan 250 ppm pada Ekstrak

All the derivatives will be calculated numerically.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Residual SS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>242.9145140</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
<td>.000000000</td>
</tr>
<tr>
<td>1.1</td>
<td>.1690514286</td>
<td>.000216628</td>
<td>-.01507242</td>
<td>.068115079</td>
<td>10.1711429</td>
</tr>
<tr>
<td>2</td>
<td>.1690514286</td>
<td>.000216628</td>
<td>-.01507242</td>
<td>.068115079</td>
<td>10.1711429</td>
</tr>
</tbody>
</table>

Run stopped after 3 model evaluations and 2 derivative evaluations. Iterations have been stopped because the magnitude of the largest correlation between the residuals and any derivative column is at most RCON = 1.000E-08

Nonlinear Regression Summary Statistics Dependent Variable ANT2_EKS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>242.74546</td>
<td>60.68637</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>.16905</td>
<td>.16905</td>
</tr>
<tr>
<td>Uncorrected Total</td>
<td>5</td>
<td>242.91451</td>
<td></td>
</tr>
<tr>
<td>(Corrected Total)</td>
<td>4</td>
<td>46.35001</td>
<td></td>
</tr>
</tbody>
</table>

R squared = 1 - Residual SS / Corrected SS = .99635

Asymptotic 95% Confidence Interval

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.000216628</td>
<td>.000062702</td>
<td>-.000580082</td>
<td>.001013338</td>
</tr>
<tr>
<td>B</td>
<td>-.01507242</td>
<td>.004578616</td>
<td>-.073249254</td>
<td>.043104412</td>
</tr>
<tr>
<td>C</td>
<td>.068115079</td>
<td>.086537321</td>
<td>-.1031445835</td>
<td>1.167675994</td>
</tr>
<tr>
<td>D</td>
<td>10.171142857</td>
<td>.408211228</td>
<td>4.984327415</td>
<td>15.357958300</td>
</tr>
</tbody>
</table>

Asymptotic Correlation Matrix of the Parameter Estimates

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.000</td>
<td>-.986</td>
<td>.897</td>
<td>-.318</td>
</tr>
<tr>
<td>B</td>
<td>-.986</td>
<td>1.000</td>
<td>-.955</td>
<td>.4038</td>
</tr>
<tr>
<td>C</td>
<td>.897</td>
<td>-.955</td>
<td>1.000</td>
<td>-.5934</td>
</tr>
<tr>
<td>D</td>
<td>-.318</td>
<td>.4038</td>
<td>-.5934</td>
<td>1.000</td>
</tr>
</tbody>
</table>
7.3. Uji Korelasi

Correlations

<table>
<thead>
<tr>
<th></th>
<th>ASF_EKS</th>
<th>ANT5_EKS</th>
</tr>
</thead>
</table>
| ASF_EKS | Pearson Correlation | 1 | .954(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |
| ANT5_EKS | Pearson Correlation | .954(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |

Correlation is significant at the 0.01 level (2-tailed).

Correlations

<table>
<thead>
<tr>
<th></th>
<th>ASF_TPG</th>
<th>ANT5_TPG</th>
</tr>
</thead>
</table>
| ASF_TPG | Pearson Correlation | 1 | .943(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |
| ANT5_TPG | Pearson Correlation | .943(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |

Correlation is significant at the 0.01 level (2-tailed).

Correlations

<table>
<thead>
<tr>
<th></th>
<th>ASF_EKS</th>
<th>ANT2_EKS</th>
</tr>
</thead>
</table>
| ASF_EKS | Pearson Correlation | 1 | .943(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |
| ANT2_EKS | Pearson Correlation | .943(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |

Correlation is significant at the 0.01 level (2-tailed).

Correlations

<table>
<thead>
<tr>
<th></th>
<th>ASF_TPG</th>
<th>ANT2_TPG</th>
</tr>
</thead>
</table>
| ASF_TPG | Pearson Correlation | 1 | .946(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |
| ANT2_TPG | Pearson Correlation | .946(**)
| | Sig. (2-tailed) | .000 |
| N | 30 | 30 |

Correlation is significant at the 0.01 level (2-tailed).